Cho hình thoi ABCD có góc A=60 độ. Điểm M thuộc AB. CM cắt DA tại N.
a) Chứng minh tam giác MBC ~ tam giác CDN
b) Chứng minh tam giác BMD ~ tam giác DBN
c) Gọi I là giao điểm của BN và DM. Tính góc BID
d) Chứng minh MA.MB=MI.MD
cho hình thoi ABCD có góc A =60 độ.P là một điểm thuộc cạnh AB.N là giao điểm của hai đường chéo AD và CP
a) chứng minh tam giác PBC đồng dạng tam giác CDN rồi suy ra DB^2=BP.DN
b)chứng minh tam giác DBN~tam giác BPD
c)Gọi M lá giao điểm của BN và DP.Tính góc BMD
d)chứng minh PA.PB=PD.PM
Cho tam giác ABC vuông tại A(AB<AC), tia phân giác của góc ACB cắt AB tại M . Kẻ MN vuông góc với BC tại N.
a) Chứng minh tam giác ACM = tam giác NCM.
b) Gọi K là giao điểm của và AC và MN . Chứng minh MK = MB.
c) Chứng minh rằng AM + BN >MK.
a: Xét ΔCAM vuông tại A và ΔCNM vuông tại N có
CM chung
góc ACM=góc NCM
=>ΔCAM=ΔCNM
b: Xét ΔMAK vuông tại A và ΔMNB vuông tại N có
MA=MN
góc AMK=góc NMB
=>ΔMAK=ΔMNB
=>MK=MB
Cho tam giác ABC có A=60 độ và AB<BC.Tia phân giác của góc B cắt cạnh AC ở M.Lấy E thuộc BC sao cho BE=AC
a) Chứng minh tam giác ABM=tam giác ECM
b) Kẻ tia phân giác của C cắt AB tại N.Gọi I là giao điểm của BM và CN.Tính BIC?
c)Chứng minh BC=BN+CM
Cho tam giác ABC vuông cân tại A. Tia phân giác của góc B cắt AC tại D, DN vuông góc với BC tại N.
a). Chứng minh tam giác DBA = tam giác DBN. So sánh DA và DC
b). Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC c). Chứng minh tam giác BMC cân
d). Gọi I là trung điểm của MC. Chứng minh ba điểm B, D, I thẳng hàng
Hình thoi ABCD có góc A= 60 độ
Gọi P là trung điểm của AB và N là giao điểm của AD, CP
a) Chứng minh P là trung điểm của NC
b) Chứng minh tam giác NCD đồng dạng tam giác PBC
c) Chứng minh diện tích hình thoi ABCD= 4 lần diện tích tam giác PBC
d) Gọi M là giao điểm của BN và DP. Chứng minh PA.PB=PD.PM
a: Xét ΔPBC và ΔPAN có
góc PBC=góc PAN
BP=AP
góc BPC=góc APN
=>ΔPBC=ΔPAN
=>PN=PC
=>P là trung điểm của CN
b: Xét ΔDNC và ΔBCP có
góc NDC=góc PBC
góc DNC=góc PCB
=>ΔDNC đồng dạng vói ΔBCP
Cho hình thoi ABCD có góc A = 60 Độ. Qua đỉnh C vẽ đường thẳng cắt AD kéo dài và AB kéo dài lần lượt tại M và N biết CM < CN.( Các đỉnh hình thoi nằm trên cạnh của tam giác AMN).
a. Chứng minh rằng: DM.AN = DA.AM
b. Gọi I là trung điểm của MN, AI cắt BC tại E. Chứng minh DM = BE
c. Gọi F là giao điểm của BM và DN. Tính số đo góc DFB?
Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(cmt)
Do đó: ΔABN=ΔACM(c-g-c)
b) Xét ΔANM có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
cho tam giác ABC có góc A=90 , AB=10 cm . gọi D là trung điểm của BC. gọi M là điểm đối xứng với D qua AB . E là giao điểm của DM và AB. Kẻ DF vuông góc với AC ( F thuộc AC )
a) tính độ dài DF
b) chứng minh tứ giác ADBM là hình thoi
c) tam giác ABC có điều kiện gì để tam giác AEDF là hình vuông
a)
D là trung điểm của BC (gt)
mà DF // AB (AB _I_ AC; DF _I_ AC)
=> F là trung điểm của AC
mà D là trung điểm của BC (gt)
=> DF là đường trung bình của tam giác CAB
=> DF = \(\frac{1}{2}\)AB = 10 : 2 = 5 (cm)
b)
D là trung điểm của BC
mà DE // AC (DE _I_ AB; AC _I_ AB)
=> E là trung điểm của AB
mà E là trung điểm của MD (M đối xứng D qua AB)
=> ADBM là hình bình hành
mà AB _I_ MD (M đối xứng D qua AB)
=> ADBM là hình thoi
c)
DEA = EAF = AFD = 900
=> AEFD là hình chữ nhật
=> AEFD là hình vuông
<=> AD là tia phân giác của BAC
mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)
=> Tam giác ABC vuông cân tại A
Bạn tự vẽ hình nha!!!
Ta có:
\(AC \perp AB\) (\(\Delta ABC\) vuông tại A (gt))
\(AC \perp DF\) (gt)
\(\Rightarrow\) AB // DF (Định lí 1 bài từ vuông góc đến song song)
mà D là trung điểm BC (gt)
\(\Rightarrow\) F là trung điểm của AC (Định lí 1 bài đường trung bình của tam giác)
Xét \(\Delta ABC\) có:
D là trung điểm BC (gt)
F là trung điểm của AC (cmt)
\(\Rightarrow\) DF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DF=\frac{AB}{2}=\frac{10}{2}=5\left(cm\right)\)
b) Chứng minh tương tự ta có E là trung điểm AB
Xét tứ giác ADBM có:
\(\Rightarrow EM=ED\) (M đối xứng với D qua AB (gt))
\(EA=EB\left(cmt\right)\)
MD giao AB tại E (gt)
\(\Rightarrow\) Tứ giác ADBM là hình bình hành (dhnb)
mà \(AB \perp MD\) (M đối xứng với D qua AB (gt))
\(\Rightarrow\) Tứ giác ADBM là hình thoi (dhnb)
c) Xét tứ giác AEDF có:
\(\widehat{EAF} = 90^0\) (\(\Delta ABC\) vuông tại A (gt))
\(\widehat{AED} = 90^0\) (\(MD \perp AB\))
\(\widehat{AFD} = 90^0\) (\(DF \perp AC\))
\(\Rightarrow\) Tứ giác AEDF là hình chữ nhật (dhnb)
Để hình chứ nhật AEDF
\(\Leftrightarrow\) AEDF là hình thoi
\(\Leftrightarrow\) AD là tia phân giác của \(\Delta ABC\) (vì AD là đường trung tuyến)
\(\Leftrightarrow\) \(\Delta ABC\) cân tại A (vì \(\Delta ABC\) vuông tại A (gt))
\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A