Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Khong Bao Minh
Xem chi tiết
Nguyễn Mai Anh-6A
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2023 lúc 14:45

a: Xét ΔCAM vuông tại A và ΔCNM vuông tại N có

CM chung

góc ACM=góc NCM

=>ΔCAM=ΔCNM

b: Xét ΔMAK vuông tại A và ΔMNB vuông tại N có

MA=MN

góc AMK=góc NMB

=>ΔMAK=ΔMNB

=>MK=MB

Ice Tea
Xem chi tiết
Chu Hải Phương
Xem chi tiết
Ha Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 10:03

a: Xét ΔPBC và ΔPAN có

góc PBC=góc PAN

BP=AP

góc BPC=góc APN

=>ΔPBC=ΔPAN

=>PN=PC

=>P là trung điểm của CN

b: Xét ΔDNC và ΔBCP có

góc NDC=góc PBC

góc DNC=góc PCB

=>ΔDNC đồng dạng vói ΔBCP

Trần Hữu Minh Quân
Xem chi tiết
NNMg
Xem chi tiết
Buddy
24 tháng 1 2021 lúc 19:55

Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha

Nguyễn Lê Phước Thịnh
24 tháng 1 2021 lúc 20:14

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

b) Xét ΔANM có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

fan FA
Xem chi tiết
Vân Hồ
Xem chi tiết
Phương An
23 tháng 12 2016 lúc 10:51

a)

D là trung điểm của BC (gt)

mà DF // AB (AB _I_ AC; DF _I_ AC)

=> F là trung điểm của AC

mà D là trung điểm của BC (gt)

=> DF là đường trung bình của tam giác CAB

=> DF = \(\frac{1}{2}\)AB = 10 : 2 = 5 (cm)

b)

D là trung điểm của BC

mà DE // AC (DE _I_ AB; AC _I_ AB)

=> E là trung điểm của AB

mà E là trung điểm của MD (M đối xứng D qua AB)

=> ADBM là hình bình hành

mà AB _I_ MD (M đối xứng D qua AB)

=> ADBM là hình thoi

c)

DEA = EAF = AFD = 900

=> AEFD là hình chữ nhật

=> AEFD là hình vuông

<=> AD là tia phân giác của BAC

mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)

=> Tam giác ABC vuông cân tại A

Hải Ninh
23 tháng 12 2016 lúc 11:55

Bạn tự vẽ hình nha!!!

Ta có:

\(AC \perp AB\) (\(\Delta ABC\) vuông tại A (gt))

\(AC \perp DF\) (gt)

\(\Rightarrow\) AB // DF (Định lí 1 bài từ vuông góc đến song song)

mà D là trung điểm BC (gt)

\(\Rightarrow\) F là trung điểm của AC (Định lí 1 bài đường trung bình của tam giác)

Xét \(\Delta ABC\) có:

D là trung điểm BC (gt)

F là trung điểm của AC (cmt)

\(\Rightarrow\) DF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DF=\frac{AB}{2}=\frac{10}{2}=5\left(cm\right)\)

b) Chứng minh tương tự ta có E là trung điểm AB

Xét tứ giác ADBM có:

\(\Rightarrow EM=ED\) (M đối xứng với D qua AB (gt))

\(EA=EB\left(cmt\right)\)

MD giao AB tại E (gt)

\(\Rightarrow\) Tứ giác ADBM là hình bình hành (dhnb)

\(AB \perp MD\) (M đối xứng với D qua AB (gt))

\(\Rightarrow\) Tứ giác ADBM là hình thoi (dhnb)

c) Xét tứ giác AEDF có:

\(\widehat{EAF} = 90^0\) (\(\Delta ABC\) vuông tại A (gt))

\(\widehat{AED} = 90^0\) (\(MD \perp AB\))

\(\widehat{AFD} = 90^0\) (\(DF \perp AC\))

\(\Rightarrow\) Tứ giác AEDF là hình chữ nhật (dhnb)

Để hình chứ nhật AEDF

\(\Leftrightarrow\) AEDF là hình thoi

\(\Leftrightarrow\) AD là tia phân giác của \(\Delta ABC\) (vì AD là đường trung tuyến)

\(\Leftrightarrow\) \(\Delta ABC\) cân tại A (vì \(\Delta ABC\) vuông tại A (gt))

\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A