Cho tam giác ABC, góc B=600, góc A=2C, AB=8, AC=10. Tính S△ABC
SẼ TICK ✔ ^^
Cho tam giác ABC, biết góc A bằng 600 , AC = 8cm, AB = 5cm. Tính diện tích S của tam giác ABC?
A. 16,6
B. 17,3
C. 18,1
D. 19,3
Chọn B.
Diện tích của tam giác đã cho là
S = 1/2. AB. AC.sinA = 1/2. 5.8.sin600 = 17,3 (cm)
cho tam giác ABC có AB=6.4 AC=8 và góc B= góc 2C tính BC
Cho tam giác ABC có AB = 10; AC = 4 và góc A bằng 600. Tính chu vi của tam giác.
A. 22,2
B. 22,72
C. 22,61
D. 22,48
Chọn B.
Theo định lí côsin ta có
BC2 = AB2 + AC2 - 2.AB.AC.cos A = 102 + 42 - 2.10.4.cos 60 = 76
Suy ra BC ≈ 8,72
Suy ra chu vi tam giác là 10 + 4 + 8,72 = 22,72
cho tam giác ABC có góc B=2C. biết ab=5, ac=8. tính bc
Kéo dài AB một đoạn thẳng BD = BC = x
dễ thấy \(\Delta ABC~\Delta ACD\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AC}{AD}\Rightarrow\frac{5}{8}=\frac{8}{5+x}\Rightarrow x=7,8\)
cho tam giác ABC có AB=5 cm, AC = 8 cm, góc A= 60 độ. AD là tia phân giác góc ABC (D thuộc BC).Tính độ dài BD.
cứu với.bạn nào làm đúng mình sẽ tick cho.
Cho tam giác ABC, biết góc góc A bằng 600, AC = 8cm, AB = 5cm. Tính bán kính R đường tròn ngoại tiếp tam giác ABC.
A. 4,4
B. 4,04
C. 3,84
D. 5,02
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{1}{32}\)
\(\Rightarrow A\approx92^0\)
\(p=\dfrac{AB+AC+BC}{2}=\dfrac{31}{2}\)
\(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\simeq40\)
\(r=\dfrac{S}{p}=\dfrac{80}{31}\)
Cho tam giác ABC vuông tại A có góc B = 600, AB = a Tính A C → . C B →
A. 3a2
B. -3a2
C. a2
D. -2a2
Cho tam giác ABC có AB=8, AC=6, BC=10 và đường cao AH
a)Chứng minh tam giác ABC vuông
b)Tính AH
c)Tính góc B và góc C
d)Tính diện tích tam giác AHC
a. Ta có: \(BC^2=100
\)
\(AB^2+AC^2=100\)
Vì \(AB^2+AC^2=BC^2\left(=100\right)\)
Nên ABC vuông tại A (Pytago đảo)
b. Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lý 3- HTL ta có:
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot8}{10}=4,8\)
=> AH=4,8
\(c.SinB=\dfrac{6}{10}=\dfrac{3}{5}=>B\cong37\)
\(SinC=\dfrac{8}{10}=\dfrac{4}{5}=>53\)
d. Ta có: Tam giác AHC vuông tại H
Áp đụng định lý Pytago vào tam giác ta được
\(HC^2=AC^2-AH^2\)
= 36-23,04=12,96
=>HC=3,6
\(SAHC=\dfrac{1}{2}\cdot AH\cdot HC=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\)