phân tích đa thức thành nhân tử a. 27x^3-8 b. 8x^3+12x^2+6x+1 c.(2y-1)^2-4x^2+4x-1
Phân tích đa thức thành nhân tử
a, 1-4x^2
b, 8-27x^3
c, 27+27x+9x^2+x^3
d, 8x^3-12x^2y+6xy^2-y^3
e, x^2+4x-5
Bài làm:
a, 1-4x2
=1-(2x)2
=(1-2x).(1+2x)
b, 8-27x3
=23-(3x)3
=(2-3x).(4+6x+9x2)
Các câu còn lại bạn dùng hằng đẳng thức là phân tích được ra thôi
1 - 4x^2
= 1^2 - ( 2x )^2
= ( 1 - 2x ) ( 1 + 2x )
8 - 27x^ 3
= 2^3 - ( 3x )^3
= ( 2 - 3x ) [ 2^2 + 2 * 3x + ( 3x )^2 ]
= ( 2 - 3x ) ( 4 + 6x + 9x^2 )
= ( 2 - 3x ) ( 9x^2 + 6x + 4 )
27 + 27x + 9x^2 + x^3
= x^3 + 9x^2 + 27x + 27
= x^3 + 3x^2 + 6x^2 + 18x + 9x + 27
= x^2 ( x + 3 ) + 6x ( x + 3 ) + 9 ( x + 3 )
= ( x + 3 ) ( x^2 + 6x + 9 )
= ( x + 3 ) ( x + 3 )^2
= ( x + 3 )^3
x^2 + 4x - 5
= x^2 - x + 5x - 5
= x ( x - 1 ) + 5 ( x - 1 )
= ( x + 1 ) ( x - 5 )
Phân tích các đa thức sau thành nhân tử
a.1-2y+y^2
b.(x+1)^2 - 25
c.1-4x^2
d.8-27x^3
e.27+27x+9x^2+6xy
f.8x^3-12x^2y+6xy^2-y^3
g.x^3+8y^3
\(\left(x-1\right)^2-25\)
\(=x^2-2x+1-25\)
\(=x^2-2x-24\)
\(=x^2-6x+4x-24\)
\(=x.\left(x-6\right)+4.\left(x-6\right)\)
\(=\left(x+4\right).\left(x-6\right)\)
a, \(1-2y+y^2=\left(y+1\right)^2=\left(y+1\right)\left(y+1\right)\)
b, \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
c, \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
d, \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
a)=(1-y)2
b)=(x+1)2-52
=(x+1+5)(x+1-5)
=(x+6)(x-4)
c)=12-(2x)2
=(1+2x)(1-2x)
d)=23-(3x)3
=(2-3x)(4+6x+9x2)
e)=33+3.9.x+3.3.x2+x3
=(3+x)3
Phân tích đa thức thành nhân tử: 1, x^3+2x^2-6x-27 2, 9x^2+6x-4y^2-4y 3, 12x^3+4x^2-27x-9
1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)
2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)
3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)
1) Ta có: \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
2: Ta có: \(9x^2+6x-4y^2-4y\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(3x+2y+2\right)\)
phân tích các đa thức sau thành nhân tử
a, 27x mũ 3 + 27 x mũ 2 + 9x + 1
b, x mũ 3 - 6x mũ 2 + 12x - 8
c, 8x mũ 3 + 12x mũ 2 + 6x + 1
a.\(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b.\(x^3-6x^2+12x-8=\left(x-2\right)^3\)
c.\(8x^3+12x^2+6x+1=\left(2x+1\right)^3\)
Phân tích đa thức thành nhân tử :
a. 1-2y+y²
b. (x+1)²-25
c. 1-4x²
d. 8-27x³
e. 27+27x+9x²+x³
f. 8x³-12x²y+6xy²-y³
g.x³+8y³
\(1-2y+y^2=\left(y-1\right)^2\)
\(\left(x+1\right)^2-25=\left(x-1\right)^2-5^2=\left(x-6\right)\left(x+4\right)\)
\(1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
\(8-27x^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
\(27+27x+9x^2+x^3=\left(x+3\right)^3\)
\(8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)
\(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Tham khảo nhé~
Mấy cái này chỉ áp dụng HĐT thoyy nha!
\(a,1-2y+y^2=\left(1-y\right)^2\)
\(b,\left(x-1\right)^2-25=\left(x-1-5\right)\left(x-1+5\right)=\left(x-6\right)\left(x+4\right)\)
\(c,1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
\(d,8-27x^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
\(e,27+27x+9x^2+x^3=\left(x+3\right)^3\)
\(f,8x^3-12x^2y+9xy^2-y^3=\left(2x-y\right)^2\)
\(g,x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+y^2\right)=\left(x+2y\right)\left(x-y\right)^2\)
=.= hok tốt!!
\(a,1-2y+y^2=y^2-2y+1.\)
\(=\left(y-1\right)^2\)
\(b,\left(x+1\right)^2-25=\left(x+1\right)^2-5^2\)
\(=\left(x+1+5\right)\left(x+1-5\right)\)
\(d,8-27^3=2^3-27^3=\left(2-27\right)\left(2^2+2.27+27^2\right)\)
\(e,27+27x+9x^2+x^3=3^3+3.3^2x+3.3.x^2+x^3\)
\(=\left(3+x\right)^3\)
\(g,x^3+8y^3=x^3+\left(2x\right)^3=\left(x+2x\right)\left(x^2+2x.x+2x^2\right)\)
\(=\left(x+2x\right)\left(x^2+2x^2+4x\right)\)
Phân tích đa thức thành nhân tử:
\(x^2+12x+36=0\)
\(4x^2-4x+1=0\)
\(x^3+6x^2+12x+8=0\)
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
a 4x^3 - 13 x^2 + 9x - 18
b - x^3 - 6x^2 + 6x +1
c x^3 - 4x^2 - 8x + 8
a. \(=4x^3-12x^2-x^2+3x+6x-18=\left(x-3\right)\left(4x^2-x+6\right)\)
b. \(=-x^3+x^2-7x^2+7x-x+1=\left(x-1\right)\left(-x^2-7x-1\right)\)
c. \(=x^3+2x^2-6x^2-12x+4x+8=\left(x+2\right)\left(x^2-6x+4\right)\)
Phân tích đa thức thành nhân tử
27x^3+27x^2+9x+1
-x^3-3x^2-3x-1
- 8+12x-6x^2+x^3
a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)
c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)
Phân tích đa thức sau thành nhân tử a) -16a^4b^6 - 24a^5b^5 - 9a^6b^4
b) x^3 - 6x^2y + 12xy^2 - 8x^3
c) x^3 + 3/2x^2 + 3/4x + 1/8
Lời giải:
a.
\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)
\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)
\(=-a^4b^4(3a+4b)^2\)
b.
$x^3-6x^2y+12xy^2-8x^3$
$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$
c.
$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$
$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$
$=(x+\frac{1}{2})^3$
a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\cdot\left(4b+3a\right)^2\)
b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(x-2y\right)^3\)
c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=\left(x+\dfrac{1}{2}\right)^3\)