\(\left(x+\frac{2006}{2007}\right)^6=0\). tìm x
Tìm x biết : \(\frac{\left(2006-x\right)^2+\left(2006-x\right)\left(x-2007\right)+\left(x-2007\right)^2}{\left(2006-x\right)^2-\left(2006-x\right)\left(x-2007\right)+\left(x-2007\right)^2}=\frac{19}{49}\)
Đặt x -2006 = y
pt <=> \(\frac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\frac{19}{49}\)
<=> \(\frac{y^2-y^2+y+y^2-2y+1}{y^2+y^2-y+y^2-2y+1}=\frac{19}{49}\)
<=> \(\frac{y^2-y+1}{3y^2-3y+1}=\frac{19}{49}\)
<=> \(49y^2-49y+49=57y^2-57y+19\)
<=> \(8y^2-8y-30=0\)
<=> \(4y^2-4y+15=0\)
Giải tiếp nha
Tìm x và y biết:
\(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
để được tổng =0 thì x + 2006/2007 = 0 và 2008/2009 - y =0
vậy suy ra x + 2006/2007 = 0 ; x = -2006/2007
suy ra 2008/2009 - y = 0 ; y = 2008/2009
Vì \(\left|x+\frac{2006}{2007}\right|\ge0;\left|\frac{2008}{2009}-y\right|\ge0\)
Mà \(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
=> \(\hept{\begin{cases}\left|x+\frac{2006}{2007}\right|=0\\\left|\frac{2008}{2009}-y\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{2006}{2007}=0\\\frac{2008}{2009}-y=0\end{cases}}\)=> \(\hept{\begin{cases}x=-\frac{2006}{2007}\\y=\frac{2008}{2009}\end{cases}}\)
Tìm x,y
\(\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}+\left|\frac{4}{3}x+\frac{5}{2}y\right|^{2007}=0\)
Vì mũ chẵn và GTTĐ luôn lớn hơn hoặc bằng 0
mà ... ( ghi đề bài ra )
\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\\\frac{4}{3}x+\frac{5}{2}y=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)
Vậy,.......
Tìm x biết
a)\(x^4-30x^2+31x-30=0\)
b)\(\left(x^2+x\right)^2+4\times\left(x^2+x\right)=12\)
c)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
c) Ta có : \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\)\(\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Mà : \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)
Nên x + 2009 = 0 => x = -2009
Cho \(f\left(x\right)=\frac{4^x}{4^x+2}\)
tính \(S=f\left(\frac{1}{2007}\right)+f\left(\frac{2}{2007}\right)+........+f\left(\frac{2006}{2007}\right)\)
Ta có nhận xét : \(a+b=1\) thì
\(f\left(a\right)+f\left(b\right)=\frac{4^a}{4^a+2}+\frac{4^b}{4^b+2}=\frac{4^a\left(4^a+2\right)+4^b\left(4^b+2\right)}{\left(4^a+2\right)\left(4^b+2\right)}\)
\(=\frac{4^{a+b}+2.4^a+4^{a+b}+2.4^b}{4^{a+b}+2.4^a+2.4^b+4}=\frac{2.4^a+2.4^b+8}{2.4^a+2.4^b+8}=1\)
Áp dụng kết quả trên ta có :
\(S=\left[f\left(\frac{1}{2007}\right)+f\left(\frac{2006}{2007}\right)\right]+\left[f\left(\frac{2}{2007}\right)+f\left(\frac{2005}{2007}\right)\right]+...+\left[f\left(\frac{1003}{2007}\right)+f\left(\frac{1004}{2007}\right)\right]\)
Vâyu \(S=1+1+1+...+1=1003\) (có 1003 số hạng)
Tìm x
a/\(\frac{x+7}{2003}+\frac{x+4}{2006}=\frac{x-1}{2011}+\frac{x-5}{2015}\)
b/\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
c/\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
a) \(\Leftrightarrow\frac{x+7}{2003}+1+\frac{x+4}{2006}+1-\frac{x-1}{2011}-1-\frac{x-5}{2015}-1=0\)
\(\Leftrightarrow\frac{x+2010}{2003}+\frac{x+2010}{2006}-\frac{x+2010}{2011}-\frac{x+2010}{2015}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2003}+\frac{1}{2006}-\frac{1}{2011}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x+2010=0\) ( vì 1/2003 + 1/2006 -- 1/2011 -- 1/2015 \(\ne\)0)
\(\Leftrightarrow x=-2010\)
câu b làm tương tự (có gì không hiểu hỏi mk nha) >v<
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
b)\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
c)\(\left(\frac{a-b}{c-d}\right)^{2005}=\frac{2a^{2005}-b^{2005}}{2c^{2005}-d^{2005}}\)
d)\(\frac{2a^{2005}+5b^{2005}}{2c^{2005}+5d^{2005}}=\frac{\left(a+b\right)^{2005}}{\left(c+d\right)^{2005}}\)
e)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
f)\(\frac{\left(20a^{2007}-11c^{2007}\right)^{2006}}{\left(20a^{2006}+11c^{2006}\right)^{2007}}=\frac{\left(20b^{2007}-11d^{2007}\right)^{2006}}{\left(20b^{2006}+11d^{2006}\right)^{2007}}\)
ừ, bạn bik làm thì giúp mình nha ^^
\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
\(\frac{8\left(x+2007\right)}{8\left(x+2000\right)\left(x+2007\right)}-\frac{8\left(x+2000\right)}{8\left(x+2000\right)\left(x+2007\right)}=\frac{7\left(x+2000\right)\left(x+2007\right)}{8\left(x+2000\right)\left(x+2007\right)}\)
\(8x+8.2007-8x+8.2000=7\left(x^2+4007x+2000.2007\right)\)
\(8.7-7\left(x^2+4007x+2000.2007\right)=0\)
\(7\left(8-x^2-4007x-2000.2007\right)=0\)
\(8-x^2-4007x-2000.2007=0\)
\(x^2+4007x+4013992=0\)
\(\left(x^2+2008x\right)+\left(1999x+4013992\right)=0\)
\(\left(x+2008\right)\left(x+1999\right)=0\)
\(\hept{\begin{cases}x=-2008\\x=-1999\end{cases}}\)
\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+...+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
phần đầu mk thiếu điều kiện,bn tự bổ sung nha
tìm giá trị các đa thức sau
\(A=x^{15}+3x^{14}+5\) biết x+3=0
\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\) biết x= -3
a) \(A=x^{15}+3x^{14}+5\)
\(=x^{14}\left(x+3\right)+5\)
\(=x^{14}.0+5\)
= 5
b) x = -3 => x + 3 = 0
\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(=\left(x^{2006}.0+1\right)^{2007}\)
\(=1^{2007}=1\)
\(A=x^{15}+3.x^{14}+5\text{ biết x+3=0}\)
\(A=x^{14}.\left(x+3\right)+5\)
\(\text{Do x+3=0}\Rightarrow A=x^{14}.0+5\)
\(A=0+5\)
\(A=5\) \(\text{Vậy }A=5\text{ với x+3=0}\)
\(B=\left(x^{2007}+3.x^{2006}+1\right)^{2007}\text{ biết x=-3}\)
\(B=\left[x^{2006}.\left(x+3\right)+1\right]^{2007}\)
\(\text{Do x=-3}\Rightarrow B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=\left(x^{2006}.0+1\right)^{2007}\)
\(B=\left(0+1\right)^{2007}\)
\(B=1^{2007}\)
\(B=1\) \(\text{Vậy }B=1\text{ với x=-3}\)