Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng khánh linh nguyễn
Xem chi tiết
Mai Khánh Linh
21 tháng 9 2023 lúc 8:59

a) Vì ABCD là hình bình hành (gt)

=> AB // CD (ĐN hình bình hành) 

     AB = CD (TC hình bình hành)

Vì M = AB/2 (M là trung điểm của AB)

     N = CD/2 (N là trung điểm của CD)

mà AB = CD (CMT)

=> M = N

=> AM // CN

=> Tứ giác AMCN là hình bình hành (DHNB hình bình hành)

 

 

emily
Xem chi tiết
Sắc màu
21 tháng 8 2018 lúc 10:26

Tự vẽ hình nha

a) Vì M là trung điểm AB, N là trung điểm CD

=> MN là đường trung bình

=> MN // AD // BC

 và MN = ( AD + BC ) : 2 = AD = BC ( vì ABCD là hình thoi nên AD = BC )

Xét tứ giác AMND có MN // AD và MN = AD

=> AMND là hình bình hành ( đpcm )

b) Vì MN // BC và MN = BC

=> BMNC là hình bình hành

=> hai đường chéo BN và CM cắt nhau tại L là trung điểm mỗi đường ( đpcm )

 c) Xét tam giác DAM và tam giác BCN có

  AD = BC 

góc DAM = góc BCN ( trong hình thoi và hình bình hành, hai góc đối bằng nhau )

AM = CN = ( AB/2 = DC/2 do AB = DC )

=> tam giác DMA = tam giác BNC ( c-g-c )

=> góc AMD = góc BNC ( c g t ư )

Có AB // DC 

=> góc AMD = góc MDN ( cặp góc so le trong )

mà góc AMD = góc BNC 

=> góc BNC = góc MDN 

mà hai góc này đồng vị

=> MD // BN

mà MB // DN ( AB // CD )

=> MBND là hình bình hành 

=> BD cắt MN tại trung điểm O của MN

Chứng minh tương tự với hình AMCN 

=> AC cắt MN tại trung điểm O của MN

Vì M là trung điểm AB, L là trung điểm BN

=> ML là đường trung bình trong tam giác BAN

=> ML // AN

và ML = 1/2 AN = AK ( AMND là hình bình hành, K là giao hai đường chéo nên K là trung điểm AN )

Xét tứ giác MLNK có ML // KN, ML = KN

=> MLKN là hình bình hành 

=> MN giao KL tại trung điểm O của MN

Vì bốn đường thẳng AC, BD, MN , KL cùng đi qua O

=> chúng đồng quy ( đpcm )

Dương Thị Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2023 lúc 14:32

a: ABCD là hình chữ nhật

=>O là trung điểm chug của AC và BD; AC=BD

=>OM=ON

Xét ΔAON và ΔCOM có

OA=OC

góc AON=góc COM

ON=OM

=>ΔAON=ΔCOM

Xet tứ giác ANCM có

O là trung điểm chung của AC và NM

=>ANCM là hình bình hành

b: Xét ΔDMC có OH//MC

nên DO/OM=DH/HC

=>DH/HC=2/1=2

=>DH=2HC

Xét ΔDOH có

N là trung điểm của DO

NE//OH

=>E là trung điểm của DH

=>DE=EH=1/2DH=HC

=>EH=1/3*DC

Xét ΔMFB và ΔMCD có

góc MFB=góc MCD

góc FMB=góc CMD

=>ΔMFB đồng dạng với ΔMCD

=>FB/CD=MB/MD=1/3

=>FB=1/3CD=EH

 

Thanh Thanh
Xem chi tiết
I don
22 tháng 9 2019 lúc 10:00

bn tự kẻ hình nha!

a) ta có: AB = DC ( ACBD là hình bình hành)

----> BM = CN ( = 1/2. AB = 1/2 . DC)

mà BM // CN

-----> BMNC là h.b.h

b) xét tam giác AMD và tam giác CNB

có: AM = CN ( = 1/2.AB = 1/2.CD)

AD = BC (gt)

^DAM = ^NCB (gt)

-----> tg AMD = tg CNB (c-g-c)

-----> DM = NB ( 2 cạnh t/ ư)

c) AN cắt DM tại I, MC cắt BN tại K. chứng minh : AC,BD,MN,IK

bài làm

Gọi AC cắt DB tại E

ta có: tg AMD = tg CNB (cmt)

-----> ^AMD = ^CNB

mà ^AMD = ^MDN ( AB//DC)

-----> ^CNB = ^MDN

mà ^CNB, ^MDN nằm ở vị trí đồng vị 

-----> DM// BN

và DM = BN (pb)

-----> DMBN là h.b.h

-------> BD cắt MN tại E ( do 2 đường chéo của h.b.h cắt nhau tại trung điểm của mỗi đường)

tương tự  bn cx chứng minh: MINK là h.b.h   ( MI = NK = 1/2.DM = 1/2.BN)

-----> MN cắt IK tại E

------------> AC,BD, MN,IK đồng quy tại E

Hạnh
Xem chi tiết
Ngô Tuấn Anh
Xem chi tiết
luanasd
Xem chi tiết
Đào Thanh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 11:06

a: Xét ΔAMD vuông tại M và ΔCNB vuông tại N có 

AD=CB

\(\widehat{ADM}=\widehat{CBN}\)

Do đó: ΔAMD=ΔCNB

Suy ra: AM=CN

tholauyeu
31 tháng 10 2021 lúc 11:08

undefinedundefined

Nguyễn Hoàng Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 10:45

a: Xét tứ giác AMCn có

AM//Cn

AM=CN

=>AMCN là hình bình hành

b; Xét ΔBAE có

M là trung điểm của BA

MF//AE

=>F là trung điểm của BE

=>BF=FE

Xét ΔDFC có

N là trung điểm của DC

NE//FC

=>E là trung điểm của DF

=>DE=EF=FB