cho \(\dfrac{4^x}{2^{x+y}}=8\) và \(\dfrac{9^{x+y}}{3^{5y}}=243\) (x,y ϵ Z). tính x.y
Cho 4x/2x+y =8 và 9x+y/35y=243 ( x,y là số tự nhiên ) Tính x.y
1,Cho 4x/2x+y =8 và 9x+y/35y=243 ( x,y là số tự nhiên ) Tính x.y
\(\dfrac{x}{3}=\dfrac{y}{4}\) và x.y = 192
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và x + y + z = \(-90\)
\(x:y:z=3:8:5\) và 3x + y \(-2z=14\)
1) \(\dfrac{x}{3}=\dfrac{y}{4}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
\(\Rightarrow xy=12k^2=192\Rightarrow k=\pm4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm12\\y=\pm16\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\end{matrix}\right.\)
2) Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{-90}{9}=-10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-10\right).2=-20\\y=\left(-10\right).3=-30\\z=\left(-10\right).5=-50\end{matrix}\right.\)
3) Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2z}{10}=\dfrac{3x+y-2z}{9+8-10}=\dfrac{14}{7}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.8=16\\z=2.5=10\end{matrix}\right.\)
1,Cho 4x/2x+y =8 và 9x+y/35y=243 ( x,y là số tự nhiên ) Tính x.y
2, Tìm các số hữu tỷ x,y biết : 2x=8y+1 và 9y=3x-9
1,Cho 4x/2x+y =8 và 9x+y/35y=243 ( x,y là số tự nhiên ) Tính x.y
2, Tìm các số hữu tỷ x,y biết : 2x=8y+1 và 9y=3x-9
1,Cho 4x/2x+y =8 và 9x+y/35y=243 ( x,y là số tự nhiên ) Tính x.y
2, Tìm các số hữu tỷ x,y biết : 2x=8y+1 và 9y=3x-9
1) Cho x, y, z ϵ R thỏa mãn:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
2) Tính giá trị biểu thức:
M = \(\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
Ta có \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\Rightarrow\left(xy+xz+yz\right)\left(x+y+z\right)=xyz\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\Rightarrow\left[{}\begin{matrix}x+y=0\\x+z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\z=-x\\y=-z\end{matrix}\right.\)TH1: Nếu x=-y⇒x8-y8=x8-(-x)8=0 (Vì x8 và (-x)8 đều là số nguyên dương)⇒M=\(\text{}\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9-z^9\right)\left(z^{10}-x^{10}\right)=\dfrac{3}{4}\)
Tương tự với y=-z và z=-x
Vậy M=\(\dfrac{3}{4}\)
Tìm x,y,z
a,\(\dfrac{2}{3}x=\dfrac{3}{4}y=\dfrac{4}{5}z\) và x+y+z=45
b,2z=3y=5z và x+y-z=95
c,\(\dfrac{3}{4}x=\dfrac{5}{7}y=\dfrac{10}{11}z\) và 2x-3y+4z=8,6
d,\(\dfrac{x}{2}=\dfrac{y}{5}\) và x.y=90
e,\(\dfrac{x}{2}=\dfrac{y}{9}\) và x.y=18
GIÚP MÌNH VỚI
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
1/ x\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\text{và}2x+3y-z=50\)
2/ x : y : z = 3 : 5 ; ( - 2 ) và 5x - y + 3z = -16
3/ 2x + 3y ; 7z = 5y và 3x - 7y + 5z = 30
4/ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\text{và}x-y-z=38\)
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30