Cho tam giác ABC đều. Vẽ ra phía ngoài tam giác ABM, tg AMD đều. Vẽ ra phía tg AMD, tg MDC đều
a, CM: Tứ giác ABCD là hình thang cân
b, Gọi O là giao điểm của AC và BD. CM: OA=1/3AC, OD=1/3BD
Cho tam giác ABC đều. Vẽ ra phía ngoài tam giác ABM, tg AMD đều. Vẽ ra phía tg AMD, tg MDC đều
a, CM: Tứ giác ABCD là hình thang cân
b, Gọi O là giao điểm của AC và BD. CM: OA=1/3AC, OD=1/3BD
Cho tam giác đều ABM, ở phía ngoài vẽ tam giác đều AMD, ở phía ngoài tam giác AMD vẽ tam giác
đều MDC. Chứng minh rằng
a) ABCD là hình thang cân.
b) Gọi O là giao điểm của 2 đường chéo AC và BD. Chứng minh rằng BO = 2OD.
Cho tam giác đều ABM, ở phía ngoài vẽ tam giác đều AMD, ở phía ngoài tam giác AMD vẽ tam giácđều MDC. Chứng minh rằnga) ABCD là hình thang cân.b) Gọi O là giao điểm của 2 đường chéo AC và BD. Chứng minh rằng BO = 2OD.
o l m . v n
cho tam giác đều ABM ở phía ngoài tam giác dựng tam giác đều AMD.ở phía ngoài tam giác AMD dựng tam giác đều MDC.CHỨNG MINH tứ giác ABCD là hình thang cân, CM BO=2OD
Do góc DAM = góc AMB=600, mà 2 góc này slt nên AD//BC=> ABCD là hình thang
Mà góc ABC= góc DCB=600 nên ABCD là hình thang cân.
Còn O là điểm gì thì mik ko bt
Do AM=AB, AD//BC nên ABCM là hình thoi.
Ma AC và BM là 2 đường chéo nên OAM=OAB=600/2=300.
Tương tự ta cx có OBM=OBC=600/2=300.
=> ABO=600+300=900
Do Tam giác ABO có B=900 và A=300 nên đây là tam giác nửa đều.
=>AO=2OB. (1)
Mà O là giao điểm 2 đg chéo hình thg cân nên OA=OD. (2)
Từ (1),(2), ta có OD=2OB.
(DO MÌNH TỰ GIẢI NÊN CÓ GÌ SAI BN SỬA LẠI NHA!)
O là giao điểm của ADC và BD bạn nhé
cho tam giác ABC nhọn. Vẽ về phía ngoài tg ABC các tg đều ABD và ACE
1, cm BE=DC
2, gọi h là giao điểm của BE và CD. Tinh số đo góc BHC (làm câu 2 thôi nhé)
cho tam giác ABC cân tại A . Dựng ra phía ngoài tg ABC các tg dều ABD và tg ACE. Gọi O là giao điểm của CD và BE
CM a)CD = BE
b) OB = OC
c) D và E cách đều đường thẳng BC
cho tam giác ABC .\(\widehat{A}=60^0\) . vẽ ra phía ngoài tam giác đó , các tam giác đều ABM , ACN . gọi D là giao điểm của AB và CM , E là giao điểm của AC và BN
a. chứng minh rằng tam giác ADE là tam giác đều
b. Cho biết BD=4; CE=9 , tính DE
BN TỰ VẼ HÌNH NHA dương minh tuấn !!!!!!
a. BM // AC \(\Rightarrow\) \(\frac{AD}{DB}=\frac{AC}{MB}\)
\(\Rightarrow\frac{AD}{AD+DB}=\frac{AC}{AC+MB}\)
\(\Rightarrow\frac{AD}{AB}=\frac{AC}{AC+AB}\left(1\right)\)
\(CN\) // \(AB\Rightarrow\frac{AE}{EC}=\frac{AB}{CN}\Rightarrow\frac{AE}{AE+EC}=\frac{AB}{AB+CN}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AB}{AB+AC}\Rightarrow\frac{AE}{AB}=\frac{AC}{AC+AB}\left(2\right)\)
TỪ (1) VÀ (2) \(\Rightarrow\frac{AD}{AB}=\frac{AE}{AB}\Rightarrow AD=AE\)
vì \(\widehat{BAC}=60^0\)
nên \(\Delta AED\) là tam giác đều
b. theo hướng chứng minh trên :
\(\frac{AD}{DB}=\frac{AC}{MB}=\frac{AC}{AB}\left(3\right)\)
\(\frac{AE}{EC}=\frac{AB}{CN}=\frac{AB}{AC}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\frac{AD}{DB}=\frac{EC}{AE}\Rightarrow AD^2=DB.EC=4.9\)
\(AD=6\Rightarrow DE=6\)
cho tam giác đều ABM ở phía ngoài tam giác dựng tam giác đều AMD.ở phía ngoài tam giác AMD dựng tam giác đều MDC.CHỨNG MINH tứ giácABCD là hình thang cân
Cho tam giac ABC có góc A = 60độ, vẽ ra phía ngoài tam giác đó các tam giác đều ABM, ACN. gọi D là giao của AB và CM, E là giao của AC và BN.
a) chứng minh tam giác ADE đều
b) cho BD=4, CE=9, tính DE