tìm x, y,z biết 2x=3y=4z và x+y+z=169
2x=3y=4z và x+y+z=169
zz
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK
\(2x=3y=4z\)\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)\(=\frac{x+y+z}{6+4+3}=\frac{169}{13}=13\)( Theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}x=13\cdot6=78\\y=13\cdot4=52\\z=13\cdot3=39\end{cases}}\)
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
Tìm x,y,z biết 2x=3y=4z và x+y+z=39
Tìm 3 số x,y,z biết:
a)x/2=y/5=z/4 và 2x-3y+z=-112
b)x/2=y/3;y/4=z/5 và 2x+3y-4z=-16
a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)
\(\frac{x}{2}=16=>x=32\)
\(\frac{y}{5}=16=>x=80\)
\(\frac{z}{4}=16=>z=64\)
Câu b) tương tự chỉ cần thay số vào nha bạn
Bài 2: Tìm x,y,z biết a) \(\frac{x}{-2}=\frac{y}{7}=\frac{z}{3}\)và 2x + 3y - 4z = 25 b) \(\frac{z}{x}=\frac{-3}{5}\)và 40x + 70z = 1000 c) \(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)và xyz = -1680 d) 2x = 3y = 4z và x + y + z = 169
a, dễ nhé
b, \(\frac{z}{x}=\frac{-3}{5}\Leftrightarrow\frac{z}{-3}=\frac{x}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{z}{-3}=\frac{x}{5}=\frac{40x+70z}{-120+350}=\frac{1000}{230}=\frac{100}{23}\)
tự thay nhé
c, Đặt \(\hept{\begin{cases}x=5k\\y=6k\\z=7k\end{cases}}\)
Ta có : \(xyz=-1680\)
\(\Leftrightarrow5k.6k.7k=-1680\)
\(\Leftrightarrow210k^3=-1680\Leftrightarrow k^3=-8\Leftrightarrow k=-2\)
\(\Rightarrow\hept{\begin{cases}x=-10\\y=-12\\z=-14\end{cases}}\)
d, Theo bài ra ta có : \(2x=3y=4z\Leftrightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)
Áp dụng t/c dãy tỉ số bằng nhau ra luôn nhé
a) \(\hept{\begin{cases}\frac{x}{-2}=\frac{y}{7}=\frac{z}{3}\\2x+3y-4z=25\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2x}{-4}=\frac{3y}{21}=\frac{4z}{12}\\2x+3y-4z=25\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-4}=\frac{3y}{21}=\frac{4z}{12}=\frac{2x+3y-4z}{-4+21-12}=\frac{25}{5}=5\)
\(\Rightarrow\hept{\begin{cases}x=-10\\y=35\\z=15\end{cases}}\)
b) \(\hept{\begin{cases}\frac{z}{x}=\frac{-3}{5}\\40x+70z=1000\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{-3}=\frac{x}{5}\\40x+70z=1000\end{cases}}\Rightarrow\hept{\begin{cases}\frac{70z}{-210}=\frac{40x}{200}\\40x+70z=1000\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{70z}{-210}=\frac{40x}{200}=\frac{40x+70z}{200-210}=\frac{1000}{-10}=-100\)
\(\Rightarrow\hept{\begin{cases}x=-500\\z=300\end{cases}}\)
c) Đặt \(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=5k\\y=6k\\z=7k\end{cases}}\)
xyz = -1680 <=> 5k.6k.7k = -1680
<=> 210k3 = -1680
<=> k3 = -8
<=> k3 = (-2)3
<=> k = -2
\(\Rightarrow\hept{\begin{cases}x=-10\\y=-12\\z=-14\end{cases}}\)
d) \(\hept{\begin{cases}2x=3y=4z\\x+y+z=169\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\\x+y+z=169\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}=\frac{169}{\frac{13}{12}}=156\)
\(\Rightarrow\hept{\begin{cases}x=78\\y=52\\z=39\end{cases}}\)
tìm x,y,z biết
2x=3y=4z và x-y+z=-10
b) Tìm ba số x, y và z biết : 2x = 3y = 4z và y – x + z = 2013
Theo đề ta có:
y-x+z=2013
\(2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tc dãy tỉ số = nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{y-x+z}{4-6+3}=\frac{2013}{1}=2013\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{6}=2013\Rightarrow x=2013\cdot6=12078\\\frac{y}{4}=2013\Rightarrow y=2013\cdot4=8052\\\frac{z}{3}=2013\Rightarrow z=2013\cdot3=6039\end{cases}}\)
2x = 3y = 4z và x + y + z= 169
help me
Có: \(2x=3y=4z\)
\(\Leftrightarrow\)\(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Leftrightarrow\)\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{169}{13}=13\)
=> \(\begin{cases}x=78\\y=52\\z=39\end{cases}\)
Giải:
Ta có: \(2x=3y=4z\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{169}{13}=13\)
+) \(\frac{x}{6}=13\Rightarrow x=78\)
+) \(\frac{y}{4}=13\Rightarrow y=52\)
+) \(\frac{z}{3}=13\Rightarrow z=39\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(78,52,39\right)\)
Theo đề , ta có :
\(2x=3y=4z\) \(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\) \(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{169}{13}=13\)
\(\Rightarrow\frac{x}{6}=13\Rightarrow x=78\)
\(\frac{y}{4}=13\Rightarrow y=52\)
\(\frac{z}{3}=13\Rightarrow z=39\)
Vậy : \(x=78;y=52;z=39\)
Tìm x,y,z biết 2x=3y ; 2y=4z và x-y+z =18
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
\(2y=4z\Rightarrow\frac{y}{4}=\frac{z}{2}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{2}=\frac{x-y+z}{6-4+2}=\frac{18}{4}\)
=>x=27;y=18;z=9
vậy x=27;y=18;z=9
\(2x=3y\Rightarrow\frac{y}{2}=\frac{x}{3}\)
\(2y=4z\Rightarrow\frac{z}{2}=\frac{y}{4}\Rightarrow\frac{z}{1}=\frac{y}{2}\)
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}\)
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{18}{6}=3\)
\(\Rightarrow\frac{x}{3}=3\Rightarrow x=9\)
\(\Rightarrow\frac{y}{2}=3\Rightarrow y=6\)
\(\Rightarrow z=3\)