Cho 3 số thực dương a,b,c thõa mãn 1/a+1/b+1/c =1.
Chứng minh rằng: a^2/(a+bc) + b^2/( b+ac)+ c^2/(c+ab)>= (a+b+c)_4
Cho a,b,c là các số dương thỏa mãn 3(ab+bc+ac)=1. Chứng minh rằng a/(a^2-bc+1) +b/(b^2-ac+1) + c/(c^2-ab+1) > 1/(a+b+c)
cho a,b,c thõa mãn a^2+b^2+c^2 =1 .chứng minh : a+b+c+ab+ac+bc<=1+√3
Ta có:\(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{cases}\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\Rightarrow1\ge ab+bc+ca}\)(1)
Lại có:\(a^2+b^2+c^2+2ab+2bc+2ca\le1+2=3\)
\(\Rightarrow\left(a+b+c\right)^2\le3\Rightarrow a+b+c\le\sqrt{3}\)(2)
Từ (1) và (2) suy ra \(a+b+c+ab+bc+ca\le1+\sqrt{3}\)
cho a,b,c là ba số dương thõa mãn điều kiện ab+bc+ca=1
Chứng minh rằng a/√1-a2+b/√1-b2+c/√1-c2 ≤ 3/2
Sửa đề: 1+a^2;1+b^2;1+c^2
\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)
\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)
=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)
cho các số dương a,b,c thỏa mãn 3(ab+bc+ac)=1. Chứng minh rằng:
\(\frac{a}{a^2-bc+1}+\frac{b}{b^2-ac+1}+\frac{c}{c^2-ab+1}\ge\frac{1}{a+b+c}\)
cho a b c là 3 số dương thoã mãn a+b+c=1 chứng minh rằng:
\(\dfrac{c+ab}{a+b}\)+\(\dfrac{a+bc}{b+c}\)+\(\dfrac{b+ac}{a+c}\)≥2
Đặt vế trái là P
\(P=\dfrac{1.c+ab}{a+b}+\dfrac{1.a+bc}{b+c}+\dfrac{1.b+ac}{a+c}=\dfrac{c\left(a+b+c\right)+ab}{a+b}+\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ac}{a+c}\)
\(P=\dfrac{ac+c^2+bc+ab}{a+b}+\dfrac{a^2+ac+ab+bc}{b+c}+\dfrac{ab+ac+b^2+bc}{a+c}\)
\(P=\dfrac{c\left(a+c\right)+b\left(a+c\right)}{a+b}+\dfrac{a\left(a+c\right)+b\left(a+c\right)}{b+c}+\dfrac{a\left(b+c\right)+b\left(b+c\right)}{a+c}\)
\(P=\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\)
Áp dụng BĐT Cô-si:
\(\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}\ge2\sqrt{\dfrac{\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)}}=2\left(a+c\right)\) (1)
Tương tự: \(\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(b+c\right)\) (2)
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\) (3)
Cộng vế với vế (1);(2);(3):
\(2.\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+2.\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+2.\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+b\right)+2\left(b+c\right)+2\left(c+a\right)\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+c}\ge2\left(a+b+c\right)=2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Câu 1: Chứng minh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1)n}\) với ∀n∈\(N^*\)
Câu 2: Cho a,b,c là các số thực dương. Chứng minh rằng: \(\frac{a^4+b^4+c^4}{a+b+c}\geq abc\).
Câu 3: Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng: \(\sqrt{a^6+b^6+1}+\sqrt{b^6+c^6+1}+\sqrt{c^6+a^6+1}\geq 3\sqrt{3}\)
Câu 4: Cho các số thực không âm a,b,c thỏa mãn \(a+b+c=3\).Chứng minh rằng: \(a^3+b^3+c^3\geq 3\)
Câu 5: Với \(a,b,c>0\) thỏa mãn điều kiện \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng: \(\sqrt\frac{b}{a}+\sqrt\frac{c}{b}+\sqrt\frac{a}{c}\leq 1\)
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Câu 1:
\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(VT=1-\dfrac{1}{n}< 1\) (đpcm)
Cho a ; b ; c là 3 số nguyên thõa mãn :
ab - ac + bc - c^2 = -1
Chứng minh rằng a ; b là 2 số đối nhau !!!
ab-ac+bc-c^2=-1
<=>a.(b-c)+c(b-c)=-1
<=>(b-c)(a+c)=-1
=>trong 2 thừa số b-c ;a+c 1 thừa số bằng 1 và thừa số kia bằng =-1
hay chúng đối nhau
=>b-c=-(a+c)=-a-c
=>b=-a(cùng bớt đi -c)
=>a và b là 2 số đối nhau(đpcm)
Ta có : ab - ac + bc - c mũ 2 = -1
(ab-ac)+( bc - c mũ 2)= -1
=> a(b - c)+c ( b - c )= -1
=> ( b - c ) . ( a +c )= -1
Vì a;b;c là các số nguyên nên a+c =1;b-c=-1hay a+c=-1;b-c=1
=> a + b = 0 hay a và b là 2 số đối nhau !
Tích cho mình nhé !!!
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
Cho a,b,c là các số thực dương thỏa mãn ab+ac+bc=abc . Chứng minh rằng :
\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được
\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)
\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)
Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)
Cách trâu bò :
Ta có :
\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)
\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)
+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)
\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)
Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )
Từ giả thiết \(ab+bc+ca=abc< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt \(\left\{\frac{1}{a};\frac{1}{b};\frac{1}{c}\right\}\rightarrow\left\{x;y;z\right\}\)khi đó bài toán quy về :
Biết \(x+y+z=1\)Chứng minh rằng : \(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\ge3\left(x^2+y^2+z^2\right)\)
p/s : bây giờ bài toán đã đơn giản rồi