Cho tam giác ABC vuông tại C có góc A = 60 độ. Tia phân giác góc BAC cắt BC ở E. Kẻ EK vuông góc với AB (D thuộc AB), kẻ BD vuông góc với AE (D thuộc AE). Chứng minh:
a, AC=CK và AE vuông góc CK
b, KA=KB
Cho tam giác ABC vuông ở C, có góc A bằng 60 độ. Tia phân giác của góc BAC cắt BC tại E. Kẻ EK vuông góc với AB( K thuộc AB). Kẻ BD vuông góc với tia AE( D thuộc tia AE). Chứng minh:
a. AC=AK và AE vuông góc CK
b. KA=KA
c.EB lớn hơn AC
d. Ba đường thẳng AC, BD, KE cùng đi qua 1 điểm.
Cho tam giác ABC vuông tại C có góc A bằng 60 độ. tia phân giác của góc BAC cắt BC ở E. kẻ EK vuông góc với AB (K thuộc AB), kẻ BD vuông góc với AE (D thuộc AE).Chứng minh: a) AC = AK và AE vuông góc với CK. b) KA = KB. c) EB>AC. d) ba đường thẳng AC,BD,KE cùng đi qua một điểm
Cho tam giác AB vuông ở C có góc A = 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc AB ( K thuộc AB ) . Kẻ BD vuông góc với tia AE ( D thuộc tia AE ) . Chứng minh
a. AC = AK và AE vuông góc CK
b. KA = KB
c. EB > AC
d. Ba đường thẳng : AC, BD, KE cùng đi qua 1 điểm
Cm: a) Xét t/giác ACE và t/giác AKE
có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)
AE : chung
\(\widehat{CAE}=\widehat{KAE}\) (gt)
=> t/giác ACE = t/giác AKE (ch - gn)
=> AC = AK ; EC = EK (các cặp cạnh t/ứng)
Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK
+) EC = EK (cmt) => E thuộc đường trung trực của CK
Mà A \(\ne\)E => AE là đường trung trực của CK
=> AE \(\perp\)CK
b) Xét t/giác ABC có góc C = 900
=> \(\widehat{A}+\widehat{ABC}=90^0\)
=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)
Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)
=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E
=> AE = EB
=> AK = KB (quan hệ giữa đường xiên và hình chiếu)
(có thể xét qua 2 t/giác AEK và t/giác BEK)
c) Xét t/giác EKB có góc EKB = 90 độ
=> EB > KB (ch > cgv)
Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)
=> EB > AC
d) Ta có: AC \(\perp\)BC \(\equiv\)C
KE\(\perp\)AB \(\equiv\)K
BD \(\perp\)AD \(\equiv\)D
=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)
a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)
\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).
b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.
c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).
d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác).
cho tam giác ABC vuông ở C có góc A =60 độ. tia phân giác của góc BAC cắt BC ở E. kẻ EK vuông góc với AB (K thuộc AB). kẻ BD vuông góc với tia AE (D thuộc AE). chứng minh:
a) AC=AK
b) AE là đường trung trực của đoạn thẳng CK
c) KA=KB
d) AC<EB
Em tham khảo câu a, b, c tại đây nhé.
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
d) Ta thấy EB = AE
Mà theo quan hệ giữa đường vuông góc với đường xiên thì AC < AE
Vậy nên AC < EB.
Cho tam giác ABC vuông tại C, có góc A=60 độ, Tia phân giác của góc BAC cắt BC tại E, kẻ EK vuông góc với AB ( K thuộc AB ), kẻ BD vuông góc với AE( D thuộc AE) a, tính góc ABC b, chứng minh tam giac AKE c, AE là đường trung trực của đoạn thẳng Ck d,chứng minh KA bằng KB e, chứng minh tam giác KBE = tam giác DBE
a: \(\widehat{ABC}=30^0\)
b: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
c: Ta có: ΔACE=ΔAKE
nên AC=AK; EC=EK
hay AE là đường trung trực của CK
d: Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
1. Cho tam giác ABC vuông ở C có góc A = 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB. (K thuộc AB). Kẻ BD vuông góc với AE (D thuộc AE). CMR:
a, AC = AK
b, AE vuông góc với CK
c, KA =Kb
d, EB>AC
Em tham khảo tại đây nhé.
Câu hỏi của Hằng Dương Thị - Toán lớp 7 - Học toán với OnlineMath
Em kham khảo link này nhé.
Câu hỏi của Hằng Dương Thị - Toán lớp 7 - Học toán với OnlineMath
Bài 11: Cho tam giác ABC vuông ở C có góc A bằng 600 . Tia phân giác của góc BAC cắt BC ở E. Kẻ EK AB ( K AB). Kẻ BD vuông góc với tia AE( D thuộc tia AE). Chứng minh: a) AC = AK và AE CKb) KA = KB c) EB > ACd) Ba đường thẳng AC, BD, KE cùng đi qua một điểm.
Cho tam giác ABC vuông tại C có góc A = 60 độ . Tia phân giác của góc BAC cắt BC ở E . Kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với tia AE ( D thuộc tia AE ) . Chứng minh :a) ∆AEC=∆AEKb) AE là đường trung trực của đoạn thẳng CKc ) KA = KBd ) EB>EC e) CD||AB và CK||BD
Giúp mình cái câu e
Cho tam giác ABC vuông ở C có A = 60 độ tia phân giác của BAC cắt BC ở E kẻ EK vuông góc AB (K € AB) kẻ BD vuông góc AE (D € AE). Chứng minh a) AC = AK , AE vuông góc CK b) Chứng minh KA = KH BT c) EB > AC