Chứng minh :
Vecto AB + vecto CD = vecto AD + vecto CB
Cho 5 điểm Chứng minh: vecto AB+ vecto CD+ vecto EA=vecto CB+ vecto ED
chung minh
Vecto AB+Vecto CD+vecto EF+vecto GA=Vecto CB+vecto ED+vecto GF
Chứng minh rằng
a) Vecto AD - vectơ BC + vectơ AB = vectơ CD - vectơ BE
b) Vecto AB - vecto DC - vecto FE = vecto CF - vecto DA + vecto EB
Chưa đủ dữ kiện đề bài để chứng minh đẳng thức. Bạn xem lại đề.
có ai biết làm toán hình ko chỉ mình với
BÀI 1 : Cho hình bình hành ABCD tâm O . chứng minh rằng :
a) vecto CO - vecto OB = vecto BA b) vecto AB - vecto BC = vecto DB
c) vecto DA - vecto DB = vecto OD - vecto OC d) vecto DA - vecto DB + vecto DC = vecto O
BÀI 2 : chứng minh rằng 4 điểm A,B,C,D bất kì ta có :
vecto AC + vecto BD = vecto AD + vecto BC
BÀI 3 : cho tứ giác ABCD . Gọi I , J là trung điểm AD , BC ; P là trung điểm IJ.
a) tính vecto AB + vecto DC + vecto BD + vecto CA
b) CMR : vecto AB + vecto CD = vecto AD + vecto CB , vecto AB + vecto DC = 2IJ
c) CMR : vecto PA + vecto PB + vecto PC + vecto PD = vecto 0 , vecto AB + vecto AC + vecto AD = 4AP
MÌNH CẦN GẤP LẮM GIÚP MÌNH NHA
bài 1
a CO-OB=BA
<=.> CO = BA +OB
<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM
b AB-BC=DB
<=> AB=DB+BC
<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM
Cc DA-DB=OD-OC
<=> DA+BD= OD+CO
<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM
d DA-DB+DC=0
VT= DA +BD+DC
= BA+DC
Mà BA=CD(CMT)
=> VT= CD+DC=O
BÀI 2
AC=AB+BC
BD=BA+AD
=> AC+BD= AB+BC+BA+AD=BC+AD (đpcm)
Cho ABCD là hình thang vuông tại A,B (AD là đáy lớn). AD = 2BC và AB = BC = a
a. Tính vecto CD - vecto CB
b. Gọi I trung điểm AD. CM: vecto BI + vecto BC - vecto BA = vecto AD
cho hình bình hành ABCD. hai điểm M,N lần lượt là trung điểm của BC và AD.
a) Tìm các tổng sau : vecto NC+vecto MC;vecto AM+vecto CD;vecto AD+vecto NC.
b)chứng minh rằng:vecto AM+vecto AN=vecto AB+vecto AD
a) Ta có: \(\overrightarrow{NC}+\overrightarrow{MC}=\overrightarrow{NC}+\overrightarrow{CE}=\overrightarrow{NE}\)
Ta có: \(\overrightarrow{AM}+\overrightarrow{MN}=\overrightarrow{AN}\)
Ta có: \(\overrightarrow{A\text{D}}+\overrightarrow{DE}=\overrightarrow{A\text{E}}\)
b) Ta có:
\(\left\{{}\begin{matrix}\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{AC}\\\overrightarrow{AB}+\overrightarrow{A\text{D}}=\overrightarrow{AC}\end{matrix}\right.\)
⇒ \(\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{A\text{D}}\)
Cho 4 diem A B C D. Lấy I và J là trung diem cua AB và CD. Chứng minh vecto AC+ vecto BD= vecto AD+ vecto BC= 2 vecto IJ
Cho ngũ giác ABCDE. Chứng minh vectơ AB + vecto BC + vecto CB = vecto AE - vecto DE
cho 6 điểm A,B,C,D,E,F, chứng minh rằng:
vecto AD + vecto BE + vecto CF = vecto AE + vecto BF + vecto CD
\(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\)
=>\(\overrightarrow{AD}-\overrightarrow{AE}+\overrightarrow{BE}-\overrightarrow{BF}+\overrightarrow{CF}-\overrightarrow{CD}=\overrightarrow{0}\)
=>\(\overrightarrow{ED}+\overrightarrow{FE}+\overrightarrow{DF}=\overrightarrow{0}\)
=>\(\overrightarrow{FD}+\overrightarrow{DF}=\overrightarrow{0}\)
=>\(\overrightarrow{FF}=\overrightarrow{0}\)(luôn đúng)