Rút gon rồi so sánh hai phân số:
a) \(\frac{6}{10}\)và \(\frac{4}{5}\).
b) \(\frac{3}{4}\)và \(\frac{5}{12}\).
So sánh hai phân số:
a) \(\frac{{ - 3}}{8}\) và \(\frac{{ - 5}}{{24}}\) b) \(\frac{{ - 2}}{{ - 5}}\) và \(\frac{3}{{ - 5}}\).
c) \(\frac{{ - 3}}{{ - 10}}\) và \(\frac{{ - 7}}{{20}}\) c) \(\frac{{ - 5}}{4}\) và \(\frac{{23}}{{ - 20}}\).
a) \(\frac{{ - 3}}{8} = \frac{{ - 3.3}}{{8.3}} = \frac{{ - 9}}{{24}}\)
Vì -9 < -5 nên \(\frac{{ - 9}}{{24}} < \frac{{ - 5}}{{24}}\)
Vậy \(\frac{{ - 3}}{8} < \frac{{ - 5}}{{24}}\).
b) Cách 1: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5}; \frac{3}{{ - 5}} = \frac{-3}{{5}}\)
Vì 2 > -3 nên \(\frac{2}{5} > \frac{-3}{{5}}\)
Vậy \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
Cách 2: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5} > 0\) mà \(\frac{3}{{ - 5}} < 0\)
\(\Rightarrow\) \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
c) \(\frac{{ - 3}}{{ - 10}} = \frac{3}{{10}} = \frac{{3.2}}{{10.2}} = \frac{6}{{20}}\)
\(\frac{{ - 7}}{{ - 20}} = \frac{7}{{20}}\)
Vì 6 < 7 nên \(\frac{6}{{20}} < \frac{7}{{20}}\) nên \(\frac{{ - 3}}{{ - 10}} < \frac{{ - 7}}{{ - 20}}\).
d) \(\frac{{ - 5}}{4} = \frac{{ - 5.5}}{{4.5}} = \frac{{ - 25}}{{20}}; \frac{{ 23}}{{-20}}=\frac{{-23}}{{20}} \)
Vì -25 < -23 nên \( \frac{{ - 25}}{{20}} < \frac{{-23}}{{20}} \)
Vậy \(\frac{{ - 5}}{4} < \frac{{23}}{{ - 20}}\).
Quy đồng mẫu số rồi so sánh hai phân số:
a) \(\dfrac{2}{5}\) và \(\dfrac{3}{10}\) b) \(\dfrac{7}{12}\) và \(\dfrac{5}{6}\) c) \(\dfrac{3}{4}\) và \(\dfrac{1}{2}\) d) \(\dfrac{8}{3}\) và \(\dfrac{11}{21}\)
a) \(\dfrac{2}{5}=\dfrac{4}{10}\)
\(\dfrac{4}{10}>\dfrac{3}{10}\)
b) \(\dfrac{5}{6}=\dfrac{10}{12}\)
\(\dfrac{7}{12}< \dfrac{10}{12}\)
c) \(\dfrac{1}{2}=\dfrac{2}{4}\)
\(\dfrac{3}{4}< \dfrac{2}{4}\)
d) \(\dfrac{8}{3}=\dfrac{56}{21}\)
\(\dfrac{56}{21}>\dfrac{11}{21}\)
1.Rút gọn(nếu cần) rồi so sánh
\(\frac{\left(-5\right)^2-5\cdot3^2}{5^3+5^2\cdot3^2}\) ;\(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\) và\(\frac{2929-101}{2\cdot1919+404}\)
so sánh hai số:A=1 và B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{99^2}+\frac{1}{100^2}\)
Ta có:B=1/2^2+1/3^2+...+1/100^2<1/1*2+1/2*3+...+1/99*100
B<1-1/100<1
Mà A=1
Nên B<A
k cho mình với nha
Rút gọn phân số rồi so sánh hai phân số sau:
a]6/12 và 3/4 b]2/5 và 8/10 c]40/35 và 6/7 d]8/16 và 5/2
a)
\(\dfrac{6}{12}=\dfrac{6:6}{12:6}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}=\dfrac{1\times2}{2\times2}=\dfrac{2}{4}\)
Mà \(\dfrac{2}{4}< \dfrac{3}{4}\)
Vậy \(\dfrac{6}{12}< \dfrac{3}{4}\).
b)
\(\dfrac{8}{10}=\dfrac{8:2}{10:2}=\dfrac{4}{5}\)
Mà \(\dfrac{2}{5}< \dfrac{4}{5}\)
Vậy \(\dfrac{2}{5}< \dfrac{8}{10}\).
c)
\(\dfrac{40}{35}=\dfrac{40:5}{35:5}=\dfrac{8}{7}\)
Mà \(\dfrac{8}{7}>\dfrac{6}{7}\)
Vậy \(\dfrac{40}{35}>\dfrac{6}{7}\).
d)
\(\dfrac{8}{16}=\dfrac{8:8}{16:8}=\dfrac{1}{2}\)
Mà \(\dfrac{1}{2}< \dfrac{5}{2}\)
Vậy \(\dfrac{8}{16}< \dfrac{5}{2}\).
Cho \(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
So sánh S với 10
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
Tìm x, biết:
a) 60%x + 0,4x + x :3 =2
b)1-\(\left(5\frac{3}{8}+x-7\frac{5}{24}\right):\left(-16\frac{2}{3}\right)\)
c)\(3\frac{1}{4}x-\frac{7}{6}x=\frac{-5}{12}+1\frac{2}{3}\)
Bài 2: Tính:
a) A= \(\frac{-45.58-45.42}{2+4+6+...+16+18}\)
b)1-2-3+4+5-6-7+...+601-602-603+604
b) \(\frac{\left(140\frac{3}{7}-138\frac{5}{12}\right):18\frac{1}{6}}{0,002}\)
Bài 3: Cho A và B, biết:
A=\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\) và B= \(\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}+\frac{4}{195}\)
Hãy so sánh A & B
1.So sánh các cặp phân số sau:
a)\(\frac{471}{532}\) và \(\frac{471471}{532532}\)
b)\(\frac{13}{15}\) và \(\frac{23}{25}\)
c)\(\frac{23}{28}\) và \(\frac{24}{27}\)
d)\(\frac{12}{25}\) và \(\frac{25}{49}\)
e)\(\frac{28}{154}\) và \(\frac{57}{308}\)
f)\(\frac{5}{16}\) và \(\frac{6}{17}\)
2)Rút gọn
1*3*5+2*6*10+4*12*20+7*21*35
________________________________
1*5*7+2*10*14+4*20*28+7*35*49
3)So sánh
c)\(\frac{6}{5}\) và \(\frac{13}{12}\)
Ghi rõ cách rút gọn ra giùm mk nhé ai nhanh mk tick 3 tick (giải bằng toán lớp 6)
giúp mk nha các bn mk đang cần gấp
1
a, \(\frac{471}{532}\)và \(\frac{471471}{532532}\)
ta thấy phân số thứ hai là \(\frac{471471}{532532}\)
ta thấy có 2 số 471
có 2 số 532 nên ta rút gọn thành phân số \(\frac{471}{532}\)
nên \(\frac{471}{532}\)= \(\frac{471471}{532532}\)
b ,
ta sẽ tìm PHÂN SỐ TRUNG GIAN .
Phân số trung gian là phân số nằm giữa 2 phân số nào đó
Cách chọn phân số trung gian:
+ Nhận thấy ở phân số thứ nhất có tử số bé hơn mẫu số và ở phân số thứ hai có tử số lớn hơn mẫu số hoặc ngược lại thì ta so sánh hai phân số đó với số trung gian là 1.
+ Nhận thấy tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai hoặc ngược lại thì ta so sánh với phân số trung gian là phân số có tử số bằng tử số của phân số thứ nhất, có mẫu số bằng mẫu số của phân số thứ hai hoặc ngược lại.
+ Trong trường hợp hiệu của tử số của phân số thứ nhất với tử số của phân số thứ hai và hiệu của mẫu số phân số thứ nhất với mẫu số của phân số thứ hai có mối quan hệ với nhau về tỉ số ( ví dụ: gấp 2 hoặc 3 lần,..) thì ta nhân cả tử số và mẫu số của phân số có tử số bé hơn lên một số lần sao cho hiệu giữa hai tử số và hiệu giữa hai mẫu số là nhỏ nhất. Sau đó ta tiến hành chọn phân số trung gian như trên.
1 ta sẽ so sánh \(\frac{13}{15}\)và \(\frac{23}{15}\)
thì ta thấy \(\frac{13}{15}\)< \(\frac{23}{15}\)
như vậy là ta đã ra dấu < nhưng nếu muốn chắc ăn thì ta tiếp tục so sánh phân số thứ hai
ok
c ,
1. So sánh hai phân số cùng mẫu.
Trong hai phân số cùng mẫu dương, phân số nào có tử lớn hơn thì lớn hơn.
2. So sánh hai phân số không cùng mẫu
Muốn so sánh hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số có cùng mẫu dương rồi so sánh các tử với nhau.
Lưu ý:
* Phân số nào có tử và mẫu là hai số nguyên cùng dấu thì lớn hơn 0. Phân số lớn hơn 0 được gọi là phân số dương.
* Phân số có tử và mẫu là hai số nguyên khác dấu thì nhỏ hơn 0. Phân số nhỏ hơn 0 được gọi là phân số âm.
Ví dụ 3. So sánh các số hữu tỉ sau:
a)\(\frac{9}{10}\)và \(\frac{5}{42}\) b)\(\frac{-4}{27}\)và \(\frac{10}{-73}\)
Ví dụ 4. Sắp xếp các số hữu tỉ sau theo thứ tự tăng dần:
\(\frac{5}{-6};\frac{3}{4};\frac{-7}{12};\frac{5}{8}\)
Ví dụ 5. So sánh các số hữu tỉ :
\(x=\frac{-2}{15};y=\frac{-10}{-11}\)
Ví dụ 6. So sánh các số hữu tỉ sau:
\(\frac{-16}{27};\frac{-16}{29};\frac{-16}{27}\)