Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thiên thần bóng đêm
Xem chi tiết
Đen đủi mất cái nik
5 tháng 10 2018 lúc 21:16

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

b,

Ta có:

\(\left(a+b+c\right)^3=0\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)

onepiece
Xem chi tiết
Dark Killer
27 tháng 6 2016 lúc 8:11

a) Xét vế trái: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3a^2bc+3abc^2+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2-a^3-b^3\)

\(=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Dark Killer
27 tháng 6 2016 lúc 8:15

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Chúc bạn học tốt và nhớ k cho mình với nhá!

Nguyễn Quý Bình
28 tháng 7 lúc 21:37

ngu

 

TỪ CÔNG DANH
Xem chi tiết
Hoàng Lê Bảo Ngọc
21 tháng 7 2016 lúc 7:54

Xét : \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Suy ra : \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c=2016\)

Vậy ta có điều phải chứng minh.

Bùng nổ Saiya
Xem chi tiết
Đinh Đức Hùng
8 tháng 8 2017 lúc 9:55

Ta có :

 \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-ac-bc}\)

\(=a+b+c=2009\)(đpcm)

Dịu Kun
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 16:46

`(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

`VT>=0`

Dấu "=" xảy ra khi `a=b=c`

Yeutoanhoc
28 tháng 6 2021 lúc 16:53

`a^3+b^3+c^3=3abc`

`<=>a^3+b^3+c^3-3abc=0`

`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`

`<=>(a+b)^3+c^3-3ab(a+b+c)=0`

`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`

`**a+b+c=0`

`**a^2+b^2+c^2=ab+bc+ca`

`<=>a=b=c`

Lê Tuấn Nghĩa
Xem chi tiết
Thanh Tùng DZ
3 tháng 8 2019 lúc 8:31

Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath

Kim Tae-hyung
Xem chi tiết
tthnew
31 tháng 7 2019 lúc 9:59

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c

tthnew
31 tháng 7 2019 lúc 10:00

c) a + b + c = 0 suy ra a = -(b+c)

\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)

\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)

\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)

tthnew
31 tháng 7 2019 lúc 9:57

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Do VT >=0 với mọi a, b, c nên a = b = c 1

tí đăng tiếp

Nguyễn Lê Thành Tín
Xem chi tiết
Nguyễn Ngọc Anh Minh
17 tháng 11 2021 lúc 14:12

Ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)

\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)

Ta có

\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)

\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)

\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)

\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)

Khách vãng lai đã xóa
Nguyễn Công Minh Hoàng
Xem chi tiết
Witch Rose
23 tháng 6 2019 lúc 10:07

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

T.Ps
23 tháng 6 2019 lúc 10:08

#)Giải :

Ta có : (a + b + c)(a+ b+ c- ab - bc - ca) 

= a3 + ab+ ac2 - a2b - abc - ca2 + a2b + b3 + bc2 - ab2 - b2c - abc + a2c + cb2 + c3 - abc - bc2 - c2a

Loại bỏ các hạng tử đồng dạng, ta được : 

= a3 + b3 + c3 - 3abc

=> a3 + b3 + c3 - 3abc = (a + b + c)(a+ b+ c- ab - bc - ca)  => đpcm