Cm bt luôn âm với mọi x:
-x^2+2x-7
-5x^2+20x-49
2.tìm GTNN của bt:
X^2+8x
2x^2+4x+15
Cm bt luôn âm với mọi x:
-x^2+2x-7
-5x^2+20x-49
Tìm gtnn của bt:
X^2+8
2x^2+4x+15
TÌM GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC:
1) \(x^2+8\)
Gọi biểu thức trên là A.
Nhận xét; \(x^2\ge0\forall x\)
\(\Rightarrow x^2+8\ge8\forall x\)
Vậy \(minA=8\) khi \(x^2=0\)\(\Rightarrow x=0\)
KL: Vậy \(minA=8\) khi \(x=0\)
2) \(2x^2+4x+15\)
\(\Rightarrow2x^2+4x+1+14\)
\(\Rightarrow\left(2x^2+1\right)^2+14\)
Gọi biểu thức trên là B.
Nhận xét: \(\left(2x^2+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x^2+1\right)^2+14\ge14\forall x\)
Vậy \(minB=14\) khi \(\left(2x^2+1\right)^2=0\)\(\Rightarrow2x^2+1=0\)\(\Rightarrow2x^2=1\)\(\Rightarrow x=\sqrt{\frac{1}{2}}\)
KL: Vậy \(minB=14\) khi \(x=\sqrt{\frac{1}{2}}\)
Tìm giá trị nhỏ nhất của biểu thức bạn AKIWA MAIYA làm rồi .
Chứng minh biểu thức luôn âm với mọi x
a) \(-x^2+2x-7\)
\(=-\left(x^2-2x+7\right)\)
\(=-\left(x^2-2.x.1+1^2+7\right)\)
\(=-\left[\left(x-1\right)^2+7\right]\)
Vì \(-\left[\left(x-1\right)^2+7\right]< 0\)
=> Biểu thức trên nhận giá trị âm với mọi x .
b) Tương tự
Cm bt luôn âm với mọi x:
-x^2+2x-7
-5x^2+20x-49
Tìm gtnn của bt:
X^2+8
2x^2+4x+15
Bài 2:
a: \(A=x^2+8>=8\)
Dấu '=' xảy rakhi x=0
b: \(B=2\left(x^2+2x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{13}{2}\right)=2\left(x+1\right)^2+13>=13\)
Dấu '=' xảy ra khi x=-1
Cm bt luôn âm với mọi x:
-5x^2+20x-49
Gọi biểu thức là A.
\(A=-5x^2+20x-49\)
\(A=-5x^2+20x-2-47\)
\(A=-\left(5x^2-20x+2\right)-47\)
\(A=-\left(5x-2\right)^2-47\)
Nhận xét: \(-\left(5x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(5x-2\right)^2-47\le-47\forall x\)
Vậy biểu thức trên luôn âm với mọi x.
1.a) Tìm giá tri nhỏ nhất hoặc lớn nhất
A = x2 - 4x - 6
B = 9x2 + 12x + 15
C = 2x - x + 4
D = 5x - x2 + 7
b) Chứng tỏ bt luôn dương hoặc luôn âm với mọi x
A = x2 - 10x + 28
B = 25x2 + 20x +73
C = 4x - x2 - 27
D =3x - x2 - 41
Ta có : 9x2 + 12x + 15
= (3x)2 + 2.3x.2 + 4 + 11
= (3x + 2)2 + 11
Mà (3x + 2)2 \(\ge0\forall x\)
Nên (3x + 2)2 + 11 \(\ge11\forall x\)
Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)
Ta có : A = x2 - 4x - 6
= x2 - 4x + 4 - 10
= (x - 2)2 - 10
Mà (x - 2)2 \(\ge0\forall x\)
=> (x - 2)2 - 10 \(\ge-10\forall x\)
Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2
Chứng minh rằng các đa thức sau luôn nhận giá trị âm với mọi giá trị của biến:
a,-x^2+6x-16
b,-5x^2+20x-49
c,-1+x-x^2
d,3x-x^2-4
e,-2x^2+10x-15
f,4x-4x^2-2y^2+6y-6
Tìm GTLN của biểu thức:
A=-x^2+6x-15
B=-2x^2+8x-15
C=-3^2+2x-1
D=-5x^2-25x+49
Tìm GTNN của biểu thức:
A=x^2-4x+7
B=x^2+8x
C=2x^2+4x+15
D=3x^2-2x-1
Tìm GTLN:
\(A=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x^2-2.x.3+9+6\right)\)
\(=-\left(x+3\right)^2-6\le0\forall x\)
Dấu = xảy ra khi:
\(x-3=0\Leftrightarrow x=3\)
Vậy Amax = - 6 tại x = 3
Tìm GTNN :
\(A=x^2-4x+7\)
\(=x^2+2.x.2+4+3\)
\(=\left(x+2\right)^2+3\ge0\forall x\)
Dấu = xảy ra khi:
\(x+2=0\Leftrightarrow x=-2\)
Vậy Amin = 3 tại x = - 2
Các câu còn lại làm tương tự nhé... :)
Cm bt sau k phụ thuộc biến x
a,8x^2.(2x-3)-4x.(4x^3-6x+1)+4.(x-3)
b,1/2x.(10x^3-8x^2+4x-2)-5x.(x^3-4/5x^2+2/5x-1/5)+7
Giúp m với m đang cần gấp ạ
mk nghĩ đề đúng của câu a phải là \(8x^2\left(2x-3\right)-4x\left(4x^2-6x+1\right)+4\left(x-3\right)\)
nhân tung ra rồi rút gọn lại là xong kết quả của phép tính là \(-12\)không chứa ẩn x nên bt trên ko phụ thuộc vào biến
bài b tương tự
\(\frac{1}{2}x\left(10x^3-8x^2+4x-2\right)-5x\left(x^3-\frac{4}{5}x^2+\frac{2}{5}x-\frac{1}{5}\right)+7\)
\(=5x^4-4x^3+2x^2-x-5x^4+4x^3-2x^2+x+7\)
\(=7\)
Vậy bt trên ko phụ thuộc vào biến.
Làm hơi tắt tí thông cảm nha!
CMR với mọi giá trị của biến ta luôn có x^4+3x^2+3>0 (x^2+2x+3)(x^2+2x+4)+3>0 Tìm GTNN hay GTLN của các biểu thức sau A=x^2+8x ; B= -2x^2+8x-15 ; C=x^2-4x+7 ; D=(x^2-4x-5)(x^2-4x-19)+49 ; E=x^2-6x+y^2-2y+12
Bài 2:
a: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-4
b: \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=-2\left(x-2\right)^2-7\le-7\)
Dấu '=' xảy ra khi x=2
c: \(C=x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=2
e: \(E=x^2-6x+y^2-2y+12\)
\(=x^2-6x+9+y^2-2y+1+2\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=3 và y=1
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16