1.
a)
\(-x^2+2x-7\left(1\right)\\ \Leftrightarrow-\left(x^2-2x+7\right)\\ \Leftrightarrow-\left[\left(x^2-2x+1\right)+6\right]\\ \Leftrightarrow-\left[\left(x-1\right)^2+6\right]\le-6\forall x\)
=> BT (1) luôn âm với mọi x
b)
\(-5x^2+20x-49\left(2\right)\\ \Leftrightarrow-\left(5x^2-20x+49\right)\\ \Leftrightarrow-\left(x^2-4x+\dfrac{49}{5}\right)\Leftrightarrow-\left[\left(x^2-4x+4\right)+\dfrac{29}{5}\right]\Leftrightarrow-\left[\left(x-2\right)^2+\dfrac{29}{5}\right]\le\dfrac{29}{5}\forall x\)
=> BT (2) luôn âm với mọi x
Bài 1 :
\(-x^2+2x-7\)
\(=\left(-x^2+2x-1\right)-6\)
\(=-\left(x^2-2x+1\right)-6\)
\(=-\left(x-1\right)^2-6\)
Do \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6\le-6< 0\)
Vậy biểu thức luôn âm với mọi giá trị của x .
\(-5x^2+20x-49\)
\(=\left(-5x^2+20x-20\right)-29\)
\(=-5\left(x^2-4x+4\right)-29\)
\(=-5\left(x-2\right)^2-29\)
Do \(\left(x-2\right)^2\ge0\Rightarrow-5\left(x-2\right)^2\le0\Rightarrow-5\left(x-2\right)^2-29\le-29< 0\)
Vậy biểu thức luôn âm với mọi giá trị của x
Bài 2 :
\(x^2+8x=x^2+8x+16-16=\left(x+4\right)^2-16\ge-16\)
\(2x^2+4x+15=2x^2+4x+2+13=2\left(x+1\right)^2+13\ge13\)