phân tích đa thức thành nhân tử y^3 + x^3 -6xy + 8
phân tích đa thức thành nhân tử 8x^3 -12x^2y+6xy-y^3
Phân tích các đa thức sau thành nhân tử:
a) (x^3)-3(x^2)+1-3x b) 3(x^2)-6xy+3(y^2)-12(z^2) c) (x^2)-7xy+10(y^2) d) (x+1)(x+2)(x+3)(x+4)-8
phân tích đa thức sau thành nhân tử
\(^{x^2-y^2+6xy+9}\)
a) \(x^3y^3+125=\left(xy\right)^3+5^3=\left(xy+5\right)\left(x^2y^2-5xy+25\right)\)
b) \(8x^3+y^3-6xy\left(2x+y\right)=\left(8x^3+y^3\right)-6xy\left(2x+y\right)=[\left(2x\right)^3+y^3]-6xy\left(2x+y\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-6xy\left(2x+y\right)=\left(2x+y\right)\left(4x^2-2xy+y^2-6xy\right)\)
\(=\left(2x+y\right)\left(4x^2-8xy+y^2\right)\)
c) \(\left(3x+2\right)^2-2\left(x-1\right)\left(3x+2\right)+\left(x-1\right)^2\)
\(=[\left(3x+2\right)-\left(x-1\right)]^2=\left(3x+2-x+1\right)^2=\left(2x+3\right)^2=\left(2x+3\right)\left(2x+3\right)\)
2.Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
a^3.y^3 + 125
8x^3,y^3 - 6xy.(2x - y)
(3x+ 2)^4 - 2.(x - 1).(3x + 2) + (x - 1)^2
a) Ta có: \(a^3y^3+125\)
\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)
b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)
\(=\left(2x-y\right)^3\)
Phân tích đa thức thành nhân tử x^5+y^5+6xy
phân tích các đa thức thành nhân tử
x^3-xy^2-6xy^2+6y^3
minh cung lop 8
x^3-xy^2-6xy^2+6y^3
=x(x^2-y^2)-6y^2(x-y)
=x(x-y)(x+y)-6y^2(x-y)
=(x-y)(x(x+y)-6y^2)
ban cu hoc thuoc HẰNG ĐẲNG THỨC LÀ RA NGAY CO J CỨ HỎI MINH MINH CHUYEN TOAN , ANH , HOA
phân tích đa thức thành nhân tử
x^2-y^2-x+3y-2
x^3+y^3+6xy+x+y-10
ai làm đc tui tích cho
Phân tích đa thức thành nhân tử
\(27x^3-\dfrac{1}{8}y^3\)
a. \(\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}x^2\right)\)
b. \(\dfrac{1}{8}\left(216x^3-y^3\right)=\dfrac{1}{8}\left(6x-y\right)\left(36x^2+6xy+y^2\right)\)
cách phân tích nào đúng a hay b giải thích vì sao