\(10x^2-7x+achiahếtcho2x-3\)
phân tích đa thức tahnhf nhân tử
1. -10x2+11x+6
2. 10x2-4x -6
3. 10x^2 +7x-6
4. 10x^2-14x-12
5. 10x^2-28x-6
6. 8x^2-23x-3
7. -8x^2+5x+3
8. -10x^2-7x+6
9. -10x^2 +28x+6
10. 6x^2-xy-y^2
11. 5x^2-18x-8
12. 6x^2+7x-3
Xin lỗi bạn,mk ms học đến phân tích đa thức thành nhân tử nhóm nhiều hạng tử,còn phần này mk ms học còn yếu lắm.
1. \(-10x^2+11x+6\)
\(=-10x^2+15x-4x+6\)
\(=-5x\left(2x-3\right)-2\left(2x-3\right)\)
\(=\left(-5x-2\right)\left(2x-3\right)\)
2.\(10x^2-4x-6\)
\(=2\left(5x^2-2x-3\right)\)
\(=2\left(5x^2+3x-5x-3\right)\)
\(=2\left[x\left(5x+3\right)-\left(5x+3\right)\right]\)
\(=2\left(x-1\right)\left(5x+3\right)\)
3. \(10x^2+7x-6\)
\(=10x^2+12x-5x-6\)
\(=2x\left(5x+6\right)-\left(5x+6\right)\)
\(=\left(2x-1\right)\left(5x+6\right)\)
4. \(10x^2-14x-12\)
\(=2\left(5x^2-7x-6\right)\)
\(=2\left(5x^2+3x-10x-6\right)\)
\(=2\left[x\left(5x+3\right)-2\left(5x+3\right)\right]\)
\(=2\left(x-2\right)\left(5x+3\right)\)
Tìm nghiệm của đa thức
a) A = x^2 + 2x - 3
b) B = -3x^2 + 12x - 9
c) C = 10x^2 - 7x -3
d) D = -7x^4 + 10x^3 - 3x^2
a) Ta có: A = 0
=> x2 + 2x - 3 = 0
=> x2 + 3x - x - 3 = 0
=> x(x + 3) - (x + 3) = 0
=> (x - 1)(x + 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Vậy ...
b) Ta có: B = 0
=> -3x2 + 12x - 9 = 0
=> -3x2 + 3x + 9x - 9 = 0
=> -3x(x - 1) + 9(x - 1) = 0
=> (-3x + 9)(x - 1) = 0
=> -3(x - 3)(x - 1) = 0
=> (x - 3)(x - 1) = 0
=> \(\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy ...
c) C = 0
=> 10x2 - 7x - 3 = 0
=> 10x2 - 10x + 3x - 3 = 0
=> 10x(x - 1) + 3(x - 1) = 0
=> (10x + 3)(x - 1) = 0
=> \(\orbr{\begin{cases}10x+3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}10x=-3\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)
d) D = 0
=> -7x4 + 10x3 - 3x2 = 0
=> x2(-7x2 + 10x - 3) = 0
=> x2(-7x2 + 7x + 3x - 3) = 0
=> x2.[-7x(x - 1) + 3(x - 1)] = 0
=> x2.(-7x + 3)(x - 1) = 0
=> x^2 = 0
-7x + 3 = 0
hoặc x - 1 = 0
=> x= 0
-7x = -3
hoặc x = 1
=> x = 0
hoặc x = 3/7
hoặc x = 1
Vậy ...
a) \(A=x^2+2x-3\)
\(x^2+2x-3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
b) \(B=-3x^2+12x-9\)
\(-3x^2+12x-9=0\)
\(\Leftrightarrow-3\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow-3\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
c) \(C=10x^2-7x-3\)
\(10x^2-7x-3=0\)
\(\Leftrightarrow x\left(10x+3\right)-\left(10x+3\right)=0\)
\(\Leftrightarrow\left(10x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}10x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)
d) \(D=-7x^4+10x^3-3x^2\)
\(-7x^4+10x^3-3x^2=0\)
\(\Leftrightarrow-x^2\left(7x^2-10x+3\right)=0\)
\(\Leftrightarrow-x^2\left(7x^2-3x-7x+3\right)=0\)
\(\Leftrightarrow-x^2\left[x\left(7x-3\right)-\left(7x-3\right)\right]=0\)
\(\Leftrightarrow-x^2\left(7x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2\left(7x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x^2=0\\7x-3=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{3}{7}\\x=1\end{cases}}\)(thay ngoặc nhọn bằng ngoặc vuông nhé, phần kl cũng thay luôn như thế nhé)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{7}\\x=1\end{cases}}\)
2,4x^3 - 10x^2y ) ( 7x^2y - 2,4x^3 3xy^2 )
-10x^2 + 11x + 6
- 10x^2 + 4x + 6
- 10x^2 -7x + 6
- 10 x^2 -17x + 6
-10x^2 -28 - 6
-10x^2 + 7x + 12
Phân tích thành nhân tử ( bằng kĩ thuật tách hạng tử)
Giải phương trình
\(2x^4-7x^3+10x^2-7x+2=0\)
\(\Leftrightarrow x^2\left(2x^2-7x+10-\dfrac{7}{x}+\dfrac{2}{x^2}\right)=0\)
\(\Leftrightarrow2x^2-7x+10-\dfrac{7}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow\left(2x^2+\dfrac{2}{x^2}\right)-\left(7x+\dfrac{7}{x}\right)+10=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)-7\left(x+\dfrac{1}{x}\right)+10=0\)
Đặt \(x+\dfrac{1}{x}\) là a ,thì \(x^2+\dfrac{1}{x^2}\) là a2-2 ta được
2(a2-2)-7a+10=0
⇔2a2-4-7a+10=0
⇔2a2-7a+6=0
⇔2a2-4a-3a+6=0
⇔(2a2-4a)-(3a-6)=0
⇔2a(a-2)-3(a-2)=0
⇔(a-2)(2a-3)=0
\(\Rightarrow\left[{}\begin{matrix}a-2=0\\2a-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2\\a=\dfrac{3}{2}\end{matrix}\right.\)
ta được a=2 => \(x+\dfrac{1}{x}=2\) => x=1
a=\(x+\dfrac{1}{x}=\dfrac{3}{2}\)(vô nghiệm)
vậy S={1}
Tìm x, biết:
a) 7x(x + 1) - 3(x + 1) =0
b) 3 ( x + 8) - x^2 - 8x = 0
c) x^2 - 10x = -25
d) x^2 - 10x = -25
a) \(7x\left(x+1\right)-3\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(7x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\7x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{7}\end{matrix}\right.\)
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 => \(\left[{}\begin{matrix}x+8=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-8\\x=3\end{matrix}\right.\)
c) \(x^2-10x=-25\Rightarrow x^2-10x+25=0\Rightarrow\left(x-5\right)^2=0\Rightarrow x=5\)
d) Giống câu c
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 =>
c)
10x^2-7x+a chia het cho 2x-3
Bài 2: Phân tích thành nhân tử ( bằng kĩ thuật tách hạng tử).
2) 3x2 + 3x - 6 ; 4) 6x2 - 13x + 6 ;
5) 6x2 + 13x + 6 ; 6) 6x2 + 15x + 6 ;
7) 6x2 - 15x + 6 ; 8) 6x2 + 20x + 6 ;
9) 6x2 - 20x + 6 ; 10) 6x2 + 12x + 6 ;
11) 8x2 - 2x - 3 ; 12) 8x2 + 2x - 3 ;
13) -8x2 + 5x + 3 ; 14) 8x2 - 10x - 3 ;
15) 8x2 + 10x - 3 ; 16) -8x2 + 23x + 3 ;
17) 8x2 - 23x - 3 ; 18) 10x2 - 11x - 6 ;
19) -10x2 + 11x + 6 ; 20) 10x2 - 4x - 6 ;
21) -10x2 + 4x + 6 ; 22) 10x2 + 7x - 6 ;
23) -10x2 - 7x + 6 ; 24) 10x2 + 17x - 6 ;
25) -10x2 - 17x + 6 ; 26) -10x2 + 28x + 6 ;
27) 10x2 - 28x - 6 ; 28) 10x2 - 7x - 12 ;
29) -10x2 + 7x + 12 ; 20) 10x2 - 14x - 12 ;
10x2-7x-5/2x-3