cho tam giác abc vuông tại a,ab=12 cm,bc = 13cm.Gọi m,n la trung điểm cua ab và bc
a) cm: mn vuông góc ab
tính dộ dài mn
1)Cho tam giác ABC vuông tại A;AB=12cm;BC=13cm.Gọi M;N là trung điểm AB;BC
a)Chứng minh MN vuông góc AB
b)Tính MN
Cho tam giác ABC vuông tại A ; AB = 12 cm ; BC = 13 cm . Gọi M ; N lần lượt là trung điểm AB ; BC
a) C/m MN vuông góc với AB
b) Tính MN
a) Xét tam giác BMN va BAC ta có:
\(\frac{BM}{BA}=\frac{BN}{BC}=\frac{1}{2}\)(vì M là trung điểm của AB, N là trung điểm của BC)
góc B chung
=> tam giác BMN đồng dạng với tam giác BAC ( c-g-c)
=> góc M=góc A = 90 độ
Vậy MN vuông góc với AB
b)
\(MN=\sqrt{BN^2-BM^2}\)
\(\Rightarrow MN=\sqrt{\frac{13}{2}^2-6^2}\)
\(\Rightarrow MN=\frac{5}{2}\)
Cho tam giác ABC vuông tại A, AB = 12 cm, BC = 13 cm. Gọi M, N lần lượt là trung điểm của AB, BC.
a/ C/m: MN vuông góc với AB
b/ Tính MN
a) Ta có: M là trung điểm AB
N là trung điểm BC
=> MN là đường trung bình của \(\Delta ABC\)
=> MN \\ AC .Nên MN\(\perp AB\) (đpcm)
b) Áp dụng định lý Pytago ,ta có :
AB2 + AC2 = BC2
AC2 = 132 - 122
=> AC = 5 cm
Lại có: MN =\(\frac{1}{2}AC\)(T/c đtb)
=> MN = \(\frac{1}{2}5\)= 2.5 cm
Bài 1: Cho tam giác cân tại A có BC=10 cm, AB=12 cm. Kẻ AH vuông góc với BC tại H. Tính độ dài AH?
Bài 2: Cho tam ABC vuông tại A có AC= 5 cm, AB=12 cm, M là trung điểm của BC. Qua M kẻ đường vuông góc với BC, cắt AB tại N. Biết MN= 2,7 cm. Tính độ dài BN?
Help me, please~ T^T
bài 1 : AH = \(\sqrt{119}\)cm
bài 2 : BN = \(\sqrt{49.54}\)cm
* hình tự vẽ
1/
Xét tam giác ABC: tam giác ABC là tam giác cân(gt) mà AH là đường cao(vì AH\(\perp\)BC)=> AH cũng là đường trung tuyến=> BH=HC
Ta có: BC=HB+HC, mà HB=HC(cmt)=> HB=HC=\(\frac{BC}{2}\)=> HB=HC= 5cm
Xét tam giác ACH, theo định lý Py ta go, có:
AH^2+ HC^2=AC^2
=> AH^2+ 5^2= 12^2
=> AH^2= 144-25
=> AH^2= 119=> AH= căn 119cm
2/ Xét tam giác BCA, theo định lý Py ta go, có:
BA^2+ AC^2= BC^2=> 12^2+5^2=BC^2
=> 144+25= BC^2=> BC^2= 169=>BC=13cm
Mà M là trung điểm BC(gt)=> MB=MC nên ta có BC=MB+MC=> MB=MC=\(\frac{BC}{2}\)=> MB=MC=6,5
Xét tam giác BMN, theo định lý Py ta go, có:
BN^2+NM^2= BM^2
=> BN^2+2,7^2=6,5^2=> BN^2 = 42,25-7,29=> BM^2= 34,96=> BM= căn 34,96cm
Bài 1 :
Xét \(\Delta ABC\)cân tại A \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (cmt)
\(\widehat{B}=\widehat{C}\)(cmt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(Ch-gn\right)\)
\(\Rightarrow BH=HC\)( 2 cạnh tương ứng)
Mà BH + HC = BC
=> BH = HC = 1/2.BC = 5cm
Xét \(\Delta AHC\)
Áp dụng định lý Pytago có : AC2 = HC2 + AH2
=> 122=52+ AH2 => 144 = 25 + AH2 => AH2 = 144 - 25 = 119 => AH = \(\sqrt{119}\)(cm)
Vậy AH dài \(\sqrt{119}\)cm
Bài 5: Cho tam giác ABC vuông tại A,
AB=12 cm BC=13 cm
Gọi M, N lần lượt là trung
điểm của AB và BC
a) Chứng minh
MN vuông góc AB
b) Tính độ dài MN
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình của tam giác ABC
=> MN//AC
Mà AB⊥AC
=> MN⊥AB
b) Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=5\left(cm\right)\)
Xét tam giác ABC có
MN là đường trung bình
=> \(MN=\dfrac{1}{2}AC=\dfrac{1}{2}.5=\dfrac{5}{2}\left(cm\right)\)
Cho tam giác vuông ABC, vuông góc ở đỉnh A biết cạnh AB= 12 cm, BC=18cm. Trên AB lấy điểm M. Sao cho AM=4 cm. Kẻ đường thẳng MN song song với AB cắt BC ở N . Tính độ dài MN
M nằm trên AB vậy sao MN song song với AB được
Cho tam giác ABC vuông góc tại A, có AC = 18 cm ,AB = 24 cm. Điểm M trên AB sao cho MA = 6 cm. Từ M kẻ đường thẳng song song với AC gặp BC tại N ( cho biết MN vuông góc với AB )
a. Tính cạnh MN
b.Tính cạnh BC và chiều cao vẽ từ A ứng với đáy BC của tam giác ABC
Cho tam giác ABC vuông tại A có M,N lần lượt là trung điểm của AB,BC 1) tính MN biết AB = 12 cm, BC = 20 cm 2) chứng minh AMNC là hình thang vuông
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=16(cm)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)
2: Xét tứ giác AMNC có MN//AC
nên AMNC là hình thang
mà \(\widehat{A}=90^0\)
nên AMNC là hình thang vuông
Cần gấp ai giải đc ko
Cho tam giác ABC vuông tại A AB=12cm , BC=13cm. Gọi M,N lần lượt là trung điểm của AB và BC
a CM MN vuông với AB
b tính độ dài MN
theo giả thiết ta có:BM=MA;BN=NC\(\Rightarrow\) MN là dg trung bình của tam giác ABC
\(\rightarrow\) MN song song vs BC\(\rightarrow\) góc BMN=BAC(đồng vị)
b/vì BM=MA ;BN=NC SUY RA:BM=MA=12:2=6 cm và BN=NC=BC:2=13:2=6.5 cm
áp dụng định lý pi-ta-go cho tam giác BNM vuông tại m:MN2=BN2+BM2
thay số:MN2=62+6.52
MN2=78.25 cm\(\Rightarrow\)MN=\(\sqrt{78.25}\)