Tính nhanh :
a ) A=\(2018^2-2017^2\)
b ) \(B=2018^2-2017^2+2016^2-2015^2+...+2^2-1^2\)
tính nhanh:
a) (2016*2017+2018*2+2015):[(2018*2017-2017*2015)+2016]
b)2018*20182017-2017*20182018
c)1+2-3-4+5+6-7-8+...+298-299-300+301+302
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/1)+(2019/2)+(2019/3)+(2019/4)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
so sánh 2 p/s A=2015/2016+2016/2017+2017/2018 va B=2015+2016+2017/2016+2017+2018
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
tính nhanh các tổng sau
a)A=2+4+6+......+2018
b)B=2018-2017+2016-2015+..........+2-1
a) \(A=2+6+8+10+....+2018\)
\(A=2\left(1+2+3+4+....+1009\right)\)
ta có \(1+2+3+4+...+n=\dfrac{\left(n+1\right).n}{2}\)
với n=1009 ta có \(1+2+3+....+1009=\dfrac{1010.1009}{2}\)
\(\Rightarrow A=2.\dfrac{1010.1009}{2}=1010.1009\)
\(B=2018-2017+2016-2015+....+2-1\)
\(B=1+1+1+1+....+1\)
tất cả có 2018 số mà cứ hiệu 2 số =1 vậy B có 1009 số 1
vậy \(B=1009\)
cho a=1/2+1/3+1/4+...+1/2018 và b=1/2017+2/2016+3/2015+...+2017/1. Tính a/b
a. So sanh 2 phan so:A= 2015/2016+2016/2017+2017/2018 va B = 2015+2016+2017/2016+2017+2018
b.1/2.4+1/4.6+........+1/(2x-2).2x = 1/8
c.Cho A = 1/4+1/9+1/16+...+1/81+1/100 . Chung minh rang : A > 65/132
d.Cho B = 12/(2 . 4 ) ^ 2 + 20/ (4 . 6) ^2 + ...........+ 388/ ( 96 . 98 ) ^ 2 + 396/ ( 98 . 100 ) ^2 .Hay so sanh B voi 1 /4
A= ( 1/2017+ 2/2016+ 3/2015+...+ 2015/3+ 2016/2+ 2017) : ( 1/2+1/3+1/4+...+1/2017+1/2018)
tính nhanh:
(2^2016+2^2017+2^2018):(2^2014+2^2015+2^2016)
Ta có \(\left(2^{2016}+2^{2017}+2^{2018}\right):\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=\left[2^{2016}.\left(1+2+2^2\right)\right]:\left[2^{2014}.\left(1+2+2^2\right)\right]\)
\(=2^{2016}.7:2^{1014}.7\)( cái này muốn tính dễ thì bạn để dạng phân số \(\frac{2^{2016}.7}{2^{2014}.7}=2^2\))
\(=2^2\)
\(=4\)