tim GTNN cua bt
C=\(2x^2+y^2-2xy+1\)
cho x+y=1.tim GTNN cua bt x^3+y^3+2xy
\(\hept{\begin{cases}x+y=1\\x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\end{cases}\Rightarrow A=1-xy}\)
\(x+y=1\Rightarrow\left(x+y\right)^2=1\Rightarrow\left(x-y\right)^2=1-4xy\)
\(\left(x-y\right)^2\ge0\Rightarrow xy\le\frac{1}{4}\)
GTNN A=1-1/4=3/4 khi xy=1/4
tớ 0 hiểu phần (x-y)^2 >= 0 thì xy<= 1/4 của cậu
tim gtnn cua c=2x^2-2xy+2y^2+4y-1
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2
tim gtnn cua A=x^2+y^2+2xy+2x+2y+3
=(x^2+y^2+2xy)+(2x+2y)+3
=((x+y)2 +2(x+y) +1)+2
=(x+y+1)2+2
vậy Amin=2
\(A=x^2+y^2+2xy+2x+2y+3\)
<=>\(A=x^2+2x\left(y+1\right)+y^2+2y+3\)
<=>\(A=x^2+2x\left(y+1\right)+\left(y^2+2y+1\right)+2\)
<=>\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2+2\)
<=>\(A=\left(x+y+1\right)^2+2\ge2\)
cho x>0,y>0, x+y=2012.
a, tim GTLN cua A= (2x^2+8xy+2y^2)/ (x^2+2xy+y^2)
b, tim GTNN cua B=(1+(2012/x))^2+(1+(2012/y))^2
cho 2 so x va y thoa man 3x+y=1
a) Tim GTNN cua bt M=3x^2+y^2
b) Tim GTLN cua bt N=x*y
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Tim GTNN
B=x^2+y^2+2x-y+1
C=2x^2+y^2+2xy+2x-2y+8
tim GTNN cua A=x^2+4y^2-2xy-2x-10y+2016
giup mình vói mai minh kt 15' rồi cầu xin đó
bn ơi, mk cũng muốn giúp nhung k tài nào tìm ra GTNN có thể sai đề hoặc mk chưa đủ giỏi để giải, nhưng kt 15p mà cho cỡ này thì thi tuyển nhân tài toan hoc à?
đề sai rồi nếu làm 15 p cũng đc 15 phút làm 1 bài là sướng bọn mk làm vài bài 15 p
Tìm GTNN của bt sau:
B=2x^2+y^2-2x+2xy+2y+3
\(B=2x^2+y^2-2x+2xy+2y+3=y^2+2y\left(x+1\right)+\left(x+1\right)^2+\left(x^2-4x+4\right)-2=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)
\(minB=-2\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
\(B=2x^2+y^2-2x+2xy+2y+3\\ B=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(x^2-4x+4\right)-2\\ B=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x-2\right)^2-2\\ B=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)