Tìm số tự nhiên n sao cho phân số n+13/n+6 tối giản
Tìm số tự nhiên n sao cho phân số n+13/n+6 là phân số tối giản.
giúp mình với ạ!
n = 13 - 6 = 7
thử lại 7 + 13/ 7 + 6 = 20/13(là phân số tố giản)
ngoài ra n còn nhìu số nha
1) tìm n sao cho phân số tối giản:
12n+1 / 30n+2
2) cho phân số:
n+19/n+6 ( n E N )
a) tìm giá trị n sao cho phân số có giá trị là số tự nhiên
b) tìm giá trị của n để phân số tối giản
tìm tất cả các số tự nhiên n để phân số (n+13)/(n-2) là phân số tối giản
\(S=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2010}\)
\(< \frac{2011}{2011}+\frac{2012}{2012}+\frac{2013}{2013}+\left(\frac{2010}{2010}+\frac{2}{2010}\right)\)\(=1+1+1+1+\frac{2}{2010}=4+2010\)\(< 4\)
Vậy S < 4
tìm tất cả các số tự nhiên n để phân số n+13/n_2 là phân số tối giản
GỌI Đ LÀ ƯC CỦA N+13 VÀ N-2
=>N+13 CHIA HẾT CHO Đ
=>N-2 CHIA HẾT CHO Đ
=>.............................
TÌM HIỂU NHÉ
MUỐN GIẢI HẾT =>K
OK
Tìm tất cả các số tự nhiên n để n+13/n-2 la phân số tối giản
Giả sử d là ước nguyên tố của n+13 và n-2
Ta có \(n+13⋮d\)
\(n-2⋮d\)
=> \(\left(n+13\right)-\left(n-2\right)⋮d\)
=> \(15⋮d\)
=> \(d\in\){3;5}, vì d nguyên tố, ta chỉ cần xét 1 trường hợp là đủ
Để phân số đã cho tối giản thì \(n+13\) không chia hết cho 3
=> n+13\(\ne3k\left(k\in Z\right)\)
=>\(n\ne3k-13\)
Vây với \(n\ne3k-13\left(k\in Z\right)\) thì phân số đã cho tối giản
cach kho hieu qua ban oi con cach khac ko
mình mới lớp 5 nên mình ko hiểu, chỉ mình được không
tìm tất cả các số tự nhiên n để n+13/n-2 là phân số tối giản
Tìm số tự nhiên n sao cho phân số sau tối giản 5n + 17 / 2n + 11
giúp với ^_^
Lời giải:
Gọi $d=ƯCLN(5n+17, 2n+11)$
$\Rightarrow 5n+17\vdots d; 2n+11\vdots d$
$\Rightarrow 5(2n+11)-2(5n+17)\vdots d$
$\Rightarrow 21\vdots d$
Vì $21=3.7$ nên để $d=1$ (tức là ps tối giản) thì $(d,3)=(d,7)=1$
Tức là $2n+11\not\vdots 3$ và $2n+11\not\vdots 7$
$\Rightarrow 2n+2\not\vdots 3$ và $2n+4\not\vdots 7$
$\Rightarrow 2(n+1)\not\vdots 3$ và $2(n+2)\not\vdots 7$
$\Rightarrow n+1\not\vdots 3$ và $n+2\not\vdots 7$
$\Rightarrow n+1-6\not\vdots 3$ và $n+2-7not\\vdots 7$
$\Rightarrow n-5\not\vdots 3$ và $n-5\not\vdots 7$
$\Rightarrow n-5\not\vdots 21$
$\Rightarrow n\neq 21k+5$ với $k$ tự nhiên.
Tìm số tự nhiên n sao cho phân số 2n+6/n+1 tối giản. Các bạn giúp mình giải với
đặt \(A=\frac{2n+6}{n+1}=\frac{2n+2+4}{n+1}=\frac{2\left(n+1\right)}{n+1}+\frac{4}{n+1}\)
Để A tối giản thì \(2n+6⋮n+1\)mà \(\frac{2\left(n+1\right)}{n+1}⋮n+1\)nên \(4⋮n+1\)
\(4⋮n+1\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3;3;-5\right\}\)
Vì \(n\in N\Rightarrow n\in\left\{0;1;3\right\}\)
tìm số tự nhiên n sao cho phân số sau tối giản
\(\frac{n+13}{n-2}\)
Cho các phân số 6/n+8,7/n+9,8/n+10. Tìm số tự nhiên n nhỏ nhất để các phân số trên tối giản