Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lilykit
Xem chi tiết
Mai Quỳnh Vy
Xem chi tiết
Em là Sky yêu dấu
28 tháng 6 2017 lúc 9:34

1/97 chứ sao lại 1/91!

giải:

đặt :1/5+1/14+1/28+1/44+1/61+1/85+1/97 =A

ta có :A=1/5(1/14+1/28+1/44)+(1/61+1/85+1/97)

A<1/5(1/14.3)+(1/61.3)

A<1/5+3/14+3/61

A<1/5+3/12+1/20

A<1/5+1/4+1/20

=>A<1/2

VẬY dpcm

Nguyễn Hồ Phương Linh
Xem chi tiết
Tiêu Chiến
Xem chi tiết

Đặt A=15+114+128+144+161+185+197

Ta có:

A=15+(114+128+144)+(161+185+197)

A<15(114.3)+(161.3)

A<15+314+361

A<15+312+120

A<15+14+120

A<12

Vậy 15+

Ngô Anh Hiếu
19 tháng 2 2021 lúc 8:16

sai đề ko dzậy

Loan Nguyen
Xem chi tiết
Hoàng Phú Huy
28 tháng 3 2018 lúc 19:36

Cách 1: Tính hết kết quả vế trái là so sánh được => đpcm 
Cách 2: Ta đánh giá: Cho a, b là 2 số dương nếu a < b thì 1/a > 1/b 
Vậy: 
VT < 1/5 + 1/14 + 1/14 + 1/14 + 1/14 + 1/14 
= 1/5 + 5/14 = (14 + 25)/(5.14) = 39/70 < 1 (đpcm) 
Có thể còn cách khác, bạn tìm thêm đi.

nguyen hai yen
Xem chi tiết
ngô thành hải
20 tháng 6 2017 lúc 15:23

ta có vế trái=0,37 mà 1/2=0,5 nên suy ra nó lớn hơn:v

Bùi Minh Quân
Xem chi tiết
Vân Anh
Xem chi tiết
hoang thi hong diep
16 tháng 5 2017 lúc 22:02

A=\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=1+\frac{3}{10^8-3}\)

\(10^8-1>10^8-3\)

\(\Rightarrow\frac{3}{10^8-1}< \frac{3}{10^8-3}\)

\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)

Vậy \(A< B\)

Khánh Linh
Xem chi tiết
Phương Trâm
7 tháng 5 2017 lúc 22:46

Sai đề. Sửa đề :v

Cmr: \(\dfrac{1}{5}+\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}< \dfrac{1}{2}\)

Giải:

Đặt \(A=\dfrac{1}{5}+\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}\)

Ta có:

\(A=\dfrac{1}{5}+\left(\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}\right)+\left(\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}\right)\)

\(A< \dfrac{1}{5}\left(\dfrac{1}{14.3}\right)+\left(\dfrac{1}{61.3}\right)\)

\(A< \dfrac{1}{5}+\dfrac{3}{14}+\dfrac{3}{61}\)

\(A< \dfrac{1}{5}+\dfrac{3}{12}+\dfrac{1}{20}\)

\(A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)

\(\Rightarrow A< \dfrac{1}{2}\)

Vậy \(\dfrac{1}{5}+\dfrac{1}{14}+\dfrac{1}{28}+\dfrac{1}{44}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{97}< \dfrac{1}{2}\) \((đpcm)\)