Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 3 2022 lúc 20:02

a: Xét ΔABE vuông tại E và ΔACD vuông tại D có 

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACD

b: \(CD=\sqrt{10^2-6^2}=8\left(cm\right)\)

c: Ta có: ΔABE=ΔACD

nên AE=AD

d: Xét ΔDBC vuông tại D và ΔECB vuông tại E có

BC chung

DC=BE

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{IBC}=\widehat{ICB}\)

hay ΔBIC cân tại I

siuuu
Xem chi tiết
Ngọc Diệu
Xem chi tiết
Minh tâm 8E Trần
Xem chi tiết
baby của jake sim
2 tháng 5 2022 lúc 1:37

1. xét tam giác BAD và tam giác BCA:

góc D= góc A = 90o

góc B chung

=> tam giác BAD ~ tam giác BCA (g.g)

=> \(\dfrac{AB}{BC}\)=\(\dfrac{BD}{AB}\)

=> AB2=BD.BC

 

Mia Moon
Xem chi tiết
Khanh Pham
19 tháng 4 2022 lúc 21:27

a, Xét ΔABC có AB=9cm, AC=12cm, ∠A=90độ 

Áp dụng định lý Py-ta-go:

BC²=AB²+AC²

→BC²=9²+12²

→BC²=225

→BC=15CM

b, Xét ΔABD và ΔEBD có:

∠ABD=∠EBD     (BD là tia phân giác)

BD-chung

∠BAD=∠BED=90 độ

→ΔABD=ΔEBD      (g.c.g)

→AD=ED              (cặp góc tương ứng)

→ΔDEA cân

c, Xét ΔDEC có ∠DEC= 90 độ và DC là cạnh huyền

mà trong tam giác vuông cạnh huyền là cạnh lớn nhất

nên DC>DE

mà DE=DA

suy ra DC>DA

d, Gọi K là giao điểm của AB và CF

Xét ΔBCK có:  BF và CA là hai đường cao 

và BF∩CA≡D

Mà DE⊥BC→DE∈đường cao từ K

→K,D,E thẳng hàng

→ AB,BE,CF đồng quy

chi vũ
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
26 tháng 4 2023 lúc 22:57

loading...

loading...

* câu d, í cậu, nếu cậu chưa học về các đường và t/c của tam giác cân với các đường đó thì bảo mk để mk làm lại cách khác cho nha :vv.

đàm anh quân lê
Xem chi tiết
Nguyễn Thị Ngọc Giang
Xem chi tiết
Linh Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 22:59

b) Xét ΔABC vuông tại A và ΔDBE vuông tại D có 

AB=BD(gt)

\(\widehat{ABC}\) chung

Do đó: ΔABC=ΔDBE(cạnh góc vuông-góc nhọn kề)

c) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có 

BH chung

BA=BD(gt)

Do đó: ΔBAH=ΔBDH(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

hay BH là tia phân giác của \(\widehat{ABC}\)

d) Ta có: BH là tia phân giác của \(\widehat{ABC}\)(cmt)

nên \(\widehat{ABH}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

Ta có: \(\widehat{ABH}+\widehat{HBK}=90^0\)

\(\Leftrightarrow\widehat{HBK}+30^0=90^0\)

hay \(\widehat{HBK}=60^0\)

Xét ΔCHD vuông tại D và ΔCBA vuông tại A có 

\(\widehat{ACB}\) chung

Do đó: ΔCHD\(\sim\)ΔCBA(g-g)

Suy ra: \(\widehat{CHD}=\widehat{CBA}\)(hai góc tương ứng)

\(\Leftrightarrow\widehat{CHD}=60^0\)

mà \(\widehat{CHD}=\widehat{HKB}\)(hai góc so le trong, BK//AC)

nên \(\widehat{HKB}=60^0\)

Xét ΔHBK có 

\(\widehat{HKB}=60^0\)(cmt)

\(\widehat{HBK}=60^0\)(cmt)

Do đó: ΔHBK đều(Dấu hiệu nhận biết tam giác đều)