Cho biểu thức M = 2|x-3| / x2+2x-15
Rút gọn M
Tìm x thuộc Z để M đạt giá trị nguyên
Cho biểu thức M = 2|x-3| / x2+2x-15
Rút gọn M
Tìm x thuộc Z để M đạt giá trị nguyên
\(a)\) Ta có :
\(M=\frac{2\left|x-3\right|}{x^2+2x-15}=\frac{2\left|x-3\right|}{\left(x^2+2x+1\right)-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-4^2}=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}\)
+) Nếu \(x-3\ge0\) \(\Rightarrow\) \(x\ge3\) ta có :
\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{2}{x+5}\)
+) Nếu \(x-3< 0\)\(\Rightarrow\)\(x< 3\) ta có :
\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)
Vậy : +) Nếu \(x\ge3\) thì \(M=\frac{2}{x+5}\)
+) Nếu \(x< 3\) thì \(M=\frac{-2}{x+5}\)
Chúc bạn học tốt ~
cho biểu thức M: =\(\frac{2\left|x-3\right|}{x^2+2x-15}\)
a) rút gọn M
b) tìm x \(\in\)Z để M đạt giá trị nguyên
Câu 1:
\(M=\frac{2|x-3|}{\left(x+5\right)\left(x-3\right)}\)
Với \(x>3\)M trở thành \(M=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}=\frac{2}{x+5}\)
Với \(x< 3\)M trở thành \(M=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)
Câu b:
\(x>3\)ta có :để M nguyên 2 chia hết cho x+5 hay x +5 là ước của 2 nên : x+5 = 2 => x =-3 loại\(x< 3\)là ta : M nguyên khi x+5 là ước của -2 ta có : x+5 = -2 => x =-7Vậy x=-7
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3
Bai 1 :Tìm giá trị của m để f (x) = x^3 + x2-11x + m
bai 2 :cho phân thức A = x^2 + 2x +1 x^2 – x – 2
a. Tìm điều kiện của x để biểu thức A xác định
b. Rút gọn biểu thức a
c. Tìm các giá trị nguyên của x để A có giả trị nguyên
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá
Cho biểu thức
M=\(\frac{3x+3}{x^3+x^2+x+1}\)
a) Rút gọn
b) Tìm giá trị nguyên của x để M đạt giá trị nguyên
c) Tìm giá trị lớn nhất của M
x= 3.x+x
x3.x2=x1.x =x3
x=3++.x3
x=6.3xx=4
a x=5
b m=4.5.
x=4.5-.5.4 +6+
m se co gia tri lon nhat la.4.5.6-7+8
tu di ma tinh tui giai cho roi day neu muon day them goi 0637995421
\(a,\)\(M=\frac{3x+3}{x^3+x^2+x+1}=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}=\frac{3}{x^2+1}\)
\(b,M\in Z\Leftrightarrow\frac{3}{x^2+1}\in Z\)
\(\Rightarrow3\)\(⋮\)\(x^2+1\)\(\Rightarrow x^2+1\inƯ_3\)
Ta có \(Ư_3=\left\{\pm1;\pm3\right\}\)
Mà \(x^2+1\ge1\)với mọi x
\(\Rightarrow\orbr{\begin{cases}x^2+1=1\\x^2+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{2}\end{cases}}}\)
\(c,\)\(M_{max}\Leftrightarrow x^2+1\)nhỏ nhất \(\Rightarrow x^2\)nhỏ nhất \(\Rightarrow x=0\)
\(\Rightarrow M_{max}=3\Leftrightarrow x=0\)
a) M= \(\frac{3x+3}{x^3+x^2+x+1}\)=\(\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)=\(\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)=\(\frac{3}{x^2+1}\)
b) M=\(\frac{3}{x^2+1}\)\(\in\)Z <=> 3 \(⋮\)x2+1
=> (x2+1) \(\in\){1;3;-1;-3}
=> x2\(\in\){0;2;-2;-4}
=> x \(\in\){0;căn 2}
Mà x \(\in\)Z => x=0
Cho biểu thức : A= x-1/3x và B= ( x+1/2x-2 + 3x-1/x2 - 1 - x+3/2x+2) : 3/x+1 Với x # 0,x# -1,1.
a)Rút gọn biểu thức B
b)Tính giá trị của biểu thức A khi x thỏa mãn x2 - 2x = 0
c) tìm giá trị của x để B/A đạt giá trị nhỏ nhất .
b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)
Cho biểu thức M= 2x/x+5+x+30-x^2/x^2-25+-1/x-5
a, rút gọn biểu thức
b, Tìm số nguyên x để M nhận giá trị nguyên
a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)
b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)