phân tích đa thức thành nhân tử
6x^2-19x+15
Phân tích đa thức sau thành nhân tử: a) 5y^2 - 5x^2 +6x+6y; b) 12x^2 + 19x +7
a, \(5y^2-5x^2+6x+6y=5\left(y-x\right)\left(x+y\right)+6\left(x+y\right)\)
\(=\left(x+y\right)\left(5y-5x+6\right)\)
b, \(12x^2+19x+7=12x^2+12x+7x+7\)
\(=12x\left(x+1\right)+7\left(x+1\right)=\left(12x+7\right)\left(x+1\right)\)
5y2 - 5x2 + 6x + 6y
= 5(y2 - x2) + 6(x + y)
= 5(y - x)(x + y) + 6(x + y)
= (x + y)(5y - 5x + 6)
b) 12x2 + 19x + 7
= 12x2 + 12x + 7x + 7
= 12x(x + 1) + 7(x + 1)
= (x + 1)(12x + 7)
Phân tích đa thức thành nhân tử
4x^4+4x^2+1
9x^4-6x^+1
\(\dfrac{x^2}{9}\)-\(\dfrac{2}{3}\)x+1
x^2-25
\(4x^4+4x^2+1=\left(2x^2+1\right)^2\)
\(9x^4-6x^2+1=\left(3x^2-1\right)^2\)
\(\dfrac{x^2}{9}-\dfrac{2}{3}x+1=\left(\dfrac{x}{3}+1\right)^2\)
\(x^2-25=\left(x-5\right)\left(x+5\right)\)
phân tích thành nhân tử: 6x^4-19x^3+27x^2-11x-15
Phân tích đa thức thành nhân tử
,
2x3 - 9x2 + 19x - 15
Phân tích đa thức thành nhân tử: 5x^2 - 19x - 4
\(5x^2-19x-4=5x^2-20x+x-4\)
\(=\left(5x^2-20x\right)+\left(x-4\right)\)
\(=5x\left(x-4\right)+\left(x-4\right)\)
\(=\left(5x-1\right)\left(x-4\right)\)
= 5x^2 + x - 20x - 4
= (5x^2 + x) - (20x + 4)
= x(5x+1) - 4 (5x + 1)
= (5x+1) (x - 4)
\(5x^2-19x-4\)
\(=5x^2-20x+\left(x-4\right)\)
\(=5x\left(x-4\right)+\left(x-4\right)\)
\(=\left(5x-1\right)\left(x-4\right)\)
Phân tích đa thức sau thành nhân tử
x^3+4x^2-19x+24
Đa thức đã cho không phân tích thành nhân tử được
*Đoán nghiệm sử dụng tính chất của đa thức:
Ta dễ dàng nhận thấy đa thức \(P\left(x\right)=x^3+4x^2-19x+24\) không có nghiệm là \(\pm1\).
Giả sử \(P\left(x\right)\) có nghiệm hữu tỉ dạng \(\dfrac{p}{q}\left(p,q\inℤ\right)\), không mất tổng quát giả sử \(q>0\). Khi đó \(p|24\), \(q|1\) \(\Rightarrow q=1\).
Khi đó do \(P\left(x\right)\) không có nghiệm là \(\pm1\) nên \(p\in\left\{\pm2,\pm3,\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)
Thử lại, ta thấy không có số \(p\) nào thỏa mãn \(\dfrac{p}{q}\) là nghiệm của P(x). Vậy đa thức \(P\left(x\right)\) không có nghiệm hữu tỉ \(\Rightarrow\) \(P\left(x\right)\) không thể phân tích thành nhân tử.
* Chú ý rằng chỉ khi \(degP\left(x\right)\le3\) hoặc \(degP\left(x\right)⋮̸2\) thì từ P(x) không có nghiệm hữu tỉ mới suy ra được P(x) không phân tích được thành nhân tử nhé. Nếu \(\left\{{}\begin{matrix}degP\left(x\right)\ge4\\degP\left(x\right)⋮2\end{matrix}\right.\) thì chưa chắc điều này đã đúng. VD: Đa thức \(Q\left(x\right)=x^4+4\) không có nghiệm hữu tỉ (nó thậm chí còn không có nghiệm thực) nhưng ta vẫn có thể phân tích thành nhân tử như sau:
\(Q\left(x\right)=x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
Phân tích đa thức thành nhân tử:
x^2-6x+15
Ta có: \(\Delta\)= b^2 - 4ac
= (-6)^2 - 4.1.15
=-24
Vì\(\Delta\)< 0 nên phương trình vô nghiệm => không thể phân tích
Phân tích đa thức thành nhân tử:
6x4+23x3+13x2_23x+7
10x4+19x3-21x2-5x+2
Phân tích đa thức sau thành nhân tử: 5x2 - 19x - 4
\(5x^2-19x-4\)
\(=\left(5x^2-20x\right)+\left(x-4\right)\)
\(=5x\left(x-4\right)+\left(x-4\right)\)
\(=\left(x-4\right)\left(5x+1\right)\)
\(5x^2-19x-4=5x^2+x-20x-4\)
\(=x\cdot\left(5x+1\right)-4\cdot\left(5x+1\right)\)
\(=\left(5x+1\right)\cdot\left(x-4\right)\)