7x+4=3x+2018
Tìm x,biết
b) |3/4x-5|-2/3=|-1/4|
a) (3x-1) (-1/4 - 5x) (-2/7x + 3)=0
c)|-2/5 - 3x| - |-7/9 + 2x|=0
d) |-3/7x - 1| + |5+2/3x|=0
e)|3x-1|+|9x^2 - 1|=0
f) x+2/2018 + x+4/2016 = x+6/2014 - 1
Mọi người giải giúp e với ạ chiều e phải nộp r
ngu thế à bạn
Tìm GTNN của A biết A=/7x-5y/+/2z-3x/+/xy+yz+zx-2018/
tìm x,y,z biết (7x-5y)^2018+(3x-2z)^2020+(xy+yz+z -4500)^2022=0
hỏi khó thế anh zai
Tìm GTNN của A biết:
A= /7x-5y/+ /2z-3x/ + /xy+yz+zx-2018/
Tìm x,y,z biết:
\(\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}\left(xy+yz+xz-4500\right)^{2018}=0\)
giúp t vs,nhanh t cho 3 tick
Ta có : (7x - 5y)2018 + (3x - 2z)2020 + (xy + yz + xz - 4500)2018 = 0
Ta có : \(\hept{\begin{cases}\left(7x-5y\right)^{2018}\ge0\\\left(3x-2z\right)^{2020}\ge0\\\left(xy+yz+xz-4500\right)^{2018}\ge0\end{cases}}\)
\(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+xz-4500\right)^{2018}\ge0\)
Dấu bằng xảy ra <=>
\(\begin{cases}7x=5y\\3x=2z\\xy+yz+xz=4500\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{7}\\\frac{x}{2}=\frac{z}{3}\\xy+yz+xz=4500\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}\\\frac{x}{10}=\frac{z}{15}\\xy+yz+xz=4500\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\x+y+z=4500\end{cases}}\)
Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\)
=> xy + yz + xz = 4500
<=> 10k.14k + 14k.15k + 10k.15k = 4500
=> 140.k2 + 210.k2 + 150.k2 = 4500
=> k2.(140 + 210 + 150) = 4500
=> k2 . 500 = 4500
=> k2 = 9
=> k = \(\pm3\)
Nếu k = 3
=> \(\hept{\begin{cases}x=30\\y=42\\z=45\end{cases}}\)
Nếu k = - 3
=> \(\hept{\begin{cases}x=-30\\y=-42\\z=-45\end{cases}}\)
a ) x.y+14+2y+7x=-5 b) x.y+x+y=2 c) x.y-1=3x+5y+4 2 tìm x thuộc Z để A đạt giá trị nhỏ nhất a) A=lxl+5 b) A=lx-5l-2018 l l là giá trị tuyệt đối nha
a ) x.y+14+2y+7x=-5
b) x.y+x+y=2
c) x.y-1=3x+5y+4
2 tìm x thuộc Z để A đạt giá trị nhỏ nhất
a) A=lxl+5
b) A=lx-5l-2018
l l là giá trị tuyệt đối nh
Tìm x,y biết: \(\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}=0\)
Lời giải:
Ta thấy:
$(7x-5y)^{2018}\geq 0, \forall x,y$
$(3x-2z)^{2020}\geq 0, \forall x,z$
$(xy+yz+xz-4500)^{2022}\geq 0, \forall x,y,z$
Do đó để tổng $(7x-5y)^{2018}+(3x-2z)^{2020}+(xy+yz+xz-4500)^{2022}=0$ thì:
$(7x-5y)^{2018}=(3x-2z)^{2020}=(xy+yz+xz-4500)^{2022}=0$
$\Leftrightarrow$ \(\left\{\begin{matrix} 7x=5y(1)\\ 3x=2z(2)\\ xy+yz+xz=4500(3)\end{matrix}\right.\)
Từ $(1);(2)\Rightarrow y=\frac{7}{5}x; z=\frac{3}{2}x$
Thay vào $(3)$:
$x.\frac{7}{5}x+\frac{7}{5}x.\frac{3}{2}x+x.\frac{3}{2}x=4500$
$\Leftrightarrow x^2=900\Rightarrow x=\pm 30$
Nếu $x=30\Rightarrow y=42; z=45$
Nếu $x=-30\Rightarrow y=-42; z=-45$
Cách khác:
\(\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}=0\)
Ta có:
\(\left\{{}\begin{matrix}\left(7x-5y\right)^{2018}\ge0\\\left(3x-2z\right)^{2020}\ge0\\\left(xy+yz+zx-4500\right)^{2022}\ge0\end{matrix}\right.\forall x,y,z.\)
\(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}\ge0\) \(\forall x,y,z.\)
\(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(7x-5y\right)^{2018}=0\\\left(3x-2z\right)^{2020}=0\\\left(xy+yz+zx-4500\right)^{2022}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}7x-5y=0\\3x-2z=0\\xy+yz+zx-4500=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}7x=5y\\3x=2z\\xy+yz+zx=4500\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{5}=\frac{y}{7}\\\frac{x}{2}=\frac{z}{3}\\xy+yz+zx=4500\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{10}=\frac{y}{14}\\\frac{x}{10}=\frac{z}{15}\\xy+yz+zx=4500\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\xy+yz+zx=4500\end{matrix}\right.\)
Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=10k\\y=14k\\z=15k\end{matrix}\right.\)
Có: \(xy+yz+zx=4500\)
\(\Rightarrow10k.14k+14k.15k+15k.10k=4500\)
\(\Rightarrow140.k^2+210.k^2+150.k^2=4500\)
\(\Rightarrow k^2.\left(140+210+150\right)=4500\)
\(\Rightarrow k^2.500=4500\)
\(\Rightarrow k^2=4500:500\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3.\)
+ TH1: \(k=3.\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.3=30\\y=14.3=42\\z=15.3=45\end{matrix}\right.\)
+ TH2: \(k=-3.\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.\left(-3\right)=-30\\y=14.\left(-3\right)=-42\\z=15.\left(-3\right)=-45\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(30;42;45\right),\left(-30;-42;-45\right).\)
Chúc bạn học tốt!
Cho đa thức : 7x3 + 3x4 - x + 5x2 - 6x3 -2x4 +2018 + x3
a, thu gọn và sắp xếp lũy thừa theo giảm của biến.
b, Chỉ rõ hệ số cao nhất và hệ số tự do của đa thức.
a)7x3+3x4-x+5x2-6x3-2x4+2018+x3 = x4+2x3+5x2-x+2018
b)Hệ số cao nhất là 2018
Hệ số tự do là x
giải các phương trình
a) (3x-2)(3x-1) = (3x+1)2
b) (4x-1)(x+1) = (2x-3)2
c) (5x+1)2 = (7x-3)(7x+2)
d) (4-3x)(4+3x)=(9x-3)(1-x)
e) x(x+1)(x+2)(x+3)=24
g) (7x - 2)2= (7x-3)(7x+2)
a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)
<=> \(9x^2-9x+2=9x^2+6x+1\)
<=> \(15x=1\) <=> \(x=\frac{1}{15}\)
b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)
<=> \(4x^2+3x-1=4x^2-12x+9\)
<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)
c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)
<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)
<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)
d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)
<=> 16 - 9x2 = 12x - 9x2 - 3
<=> 12x = 19
<=> x = 19/12
e) x(x + 1)(x + 2)(x + 3) = 24
<=> (x2 + 3x)(x2 + 3x + 2) = 24
<=> (x2 + 3x)2 + 2(x2 + 3x) - 24 = 0
<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0
<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0
<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
g) (7x - 2)2 = (7x - 3)(7x + 2)
<=> 49x2 - 28x + 4 = 49x2 - 7x - 6
<=> 21x = 10 <=> x = 10/21