CMR với mọi số nguyên a>2, tồn tại 2 số tự nhiên b, c sao cho a = b + c và (b,c) = 1
Bài 1: Cho a là số gồm 2n chữ số 1, b là số gồm n +1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài 2: Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
bài 3: Cho hai số tự nhiên a và b (với điều kiện a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài 4: Tìm n biết rằng n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài 5: Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
CMR với mọi số tự nhiên a , tồn tại số tự nhiên b sao cho a.b + 4 là số chính phương.
Đặt a.b + 4 = m2 (m là số tự nhiên)
=> a.b = m2 - 4 = (m - 2).(m+2) => b = (m-2).(m+2)/a
Chọn m = a + 2 => m - 2 = a
=> b = a.(a+4)/a = a+ 4
Vậy với mọi số tự nhiên a luôn tồn tại b = a+ 4 để a.b + 4 là số chính phương
Ta có:
Giả sử: ab + 4 = A2A2
<=> A2A2 - 4 = ab
<=> A2A2 - 2222 = ab
<=> (A+2)(A-2) = ab : luôn đúng với mọi a,b
=> Đpcm
Trần thị Loan b có phải là số tự nhiên đâu mà m-2 hoặc m+2 phải chia hết cho a
Các bạn giúp mình với:
CMR VỚI MỌI SỐ TỰ NHIÊN a, TỒN TẠI SỐ TỰ NHIÊN b SAO CHO ab+4 LÀ 1 SỐ CHÍNH PHƯƠNG.
1) a) Tìm số nguyên x,y biết: | 3-x | = x-5
b) Tìm số nguyên x,y sao cho: y/3 - 1/x = 1/3
c) CMR với mọi số nguyên n thì: 5n+4 và 4n+3 là hai số nguyên tố cùng nhau
d) Tìm 2 số tự nhiên a,b biết: ƯCLN của a,b = 4, BCNN của a,b =24 và a>b
1 , Chứng minh rằng với mọi số tự nhiên a , tồn tại số
tự nhiên b sao cho ab + 4 là số chính phương .
2 , Cho a là số gồm 2n chữ số1 , b là số gồm n + 1 chữ số , c là số gồm n chữ số 6 .
Chứng minh rằng a + b + c + 8 là số chính phương .
kết bạn vs mk nha và ai giải nhanh nhất thì mk sẽ tik cho luôn .
Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)
cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng
\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
phân tích 10^2n = (10^n)^2
10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được
\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)
=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)
=\(\frac{\left(10^n+8\right)^2}{3^2}\)
=\(\left(\frac{10^n+8}{3}\right)^2\)
vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương
bạn cho mik hỏi câu b thì b là số gồm n+1 c/s nào
câu b bạn phân tích a = (10000...0( có 2n cs 0) -1)/9
ph b và c tương tự trong đó c=(10000..0 ( có n cs 0) -1)/9*6
CMR ko tồn tại số tự nhiên a,b,c thuộc z thỏa mãn a^2+b^2+c^2=2007
Dùng nguyên lí Dirichle để giải các bài tập sau:
1) Viết 20 số tự nhiên vào 20 tấm bìa. CMR: Ta có thể chọn 1 hay nhiều tấm bìa để tổng các số đó chia hết cho 20
2) CMR: tồn tại 1 số tự nhiên chia hết cho 17
a) Gồm toàn chữ số 1 và chữ số 0
b) Gồm toàn chữ số 1
3) CMR: Tồn tại số tự nhiên k để 3k có 3 chữ số tận cùng là 001
4) CHo 51 số tự nhiên khác 0 và không vượt quá 100. CMR:
a) Mỗi số đều viết được 2k.b(k;b thuộc N, b lẻ, k có thể = 0). Xác định khoảng giá trị của k và b
b) Tồn tại 2 số mà số này là bội của số kia
CMR: không tồn tại các số nguyên a, b, c sao cho a2 + b2 + c2 = 2007
Do tổng 3 số là một số lẻ nên 3 số gồm: 2 chẵn + 1 lẻ hoặc 3 lẻ
+TH1: 2 số chẵn và 1 số lẻ. Do vai trò của a, b, c là như nhau nên ta giả sử \(a=2x;\text{ }b=2y;\text{ }c=2z+1\) (a và b chẵn; c lẻ).
\(2007=\left(2x\right)^2+\left(2y\right)^2+\left(2z+1\right)^2=4x^2+4y^2+4z^2+4z+1\)
\(\Rightarrow4\left(x^2+y^2+z^2+z\right)=2006\)
Vế trái chia hết cho 6 mà vế phải không chia hết cho 6 => không tồn tại các số nguyên x, y, z => không tồn tại các số nguyên a, b, c.
+TH2: 3 số đều lẻ.
Giả sử \(a=2x+1;b=2y+1;c=2z+1\)
\(2007=\left(2x+1\right)^2+\left(2y+1\right)^2+\left(2z+1\right)^2=4x^2+4x+1+4y^2+4y+1+4z^2+4z+1\)
\(\Rightarrow4\left(x^2+x+y^2+y+z^2+z\right)=2004\)
\(\Rightarrow x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)=501\)
+Do x và x+1 là 2 số nguyên liên tiếp nên 1 trong 2 số là số chẵn => tích của chúng là số chẵn hay x(x+1) chẵn.
Tương tự y(y+1) và z(z+1) đều chẵn
=> Vế trái chẵn và vế phải = 501 là một số lẻ
=> không tồn tại x, y, z nguyên.
=> không tồn tại các số nguyên a, b, c thỏa mãn.
Vậy: không tồn tại các số nguyên a, b, c thỏa \(a^2+b^2+c^2=2007\)
Cảm ơn Mr Lazy nha, nhưng mình vừa biết làm xong, bạn giải giùm mình bài này nhé http://olm.vn/hoi-dap/question/128897.html
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1