tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho tích xy đạt max
Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) sao cho tích \(xy\) đạt giá trị lớn nhất.
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)
Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)
\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)
Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)
\(\Leftrightarrow4\ge2+xy\)
\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)
\(\Leftrightarrow Max\left(xy\right)=2\)
Dấu "=" xảy ra khi
\(xy\in\left\{-1;1;-2;2\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
TÌm các số nguyên x,y thỏa mãn : 2x^2+1/x^2 +y^2/4 =4 sao cho tích x,y đạt giá trị lớn nhất
\(\text{Ta có : }2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
\(\Leftrightarrow\left(x^2+2+\frac{1}{x^2}\right)+\left(x^2-xy+\frac{y^2}{4}\right)=2-xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)
\(\text{ Lại có : }\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2\ge0\)
\(\Rightarrow2-xy\ge0\)
\(\Rightarrow xy\le2\)
Mà xy có giá trị lớn nhất
\(\Rightarrow xy\in\left\{\left(1;2\right)\left(2;1\right)\left(-1;-2\right)\left(-2;-1\right)\right\}\)
1,Tìm các số nguyên x,y thỏa mãn \(x^2y^2-x^2-3y^2-2x-1=0\).
2,Tìm các số nguyên x,y thỏa mãn \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\) để cho tích xy đạt giá trị lớn nhất.
Tìm các cặp số nguyên (x;y) thoả mãn 2x^2+1/x^2+y^2/4=4 sao cho tích x.y đạt giá trị lớn nhất
Mik đang cần gấp. Các bạn giúp mik với ạ.Cảm ơn nh!!!
Bài1: Tìm các số nguyên x,y thỏa mãn: x^4+2x^2=y^3
Bài2: Tìm các số tự nhiên x,y thỏa mãn: 2x.x^2=9y^2+6y+16
Bài3: Cho x,y,z>0 thỏa mãn x^2+y^2+z^2=3. Tìm Max P= x/(3-yz) + y/(3-xz) +z/(3-xy)
Bài 4. Tìm các số nguyên x và y thỏa mãn (x+1).( y-2) =5 Bài 5. Tìm các số nguyên x và y thỏa mãn xy -2x + 3y
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
Cho 2 số x,y thỏa mãn đẳng thức 2x^2+1/x^2+y^2/4=4 Xác định x,y để tích xy đạt GTNN
Cho \(x,y\ne0\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^4}{4}=4\) .
Tìm MIN, MAX của : P= \(xy+2021\)
Em kiểm tra đề là \(\dfrac{y^2}{4}\) hay \(\dfrac{y^4}{4}\)
Nếu đề đúng là \(\dfrac{y^4}{4}\) thì có thể coi như là không giải được
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2-xy+\dfrac{y^2}{4}\right)+xy=2\)
\(\Leftrightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2+xy\ge xy\)
\(\Rightarrow P_{max}=2023\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;-2\right);\left(1;2\right)\)
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+xy+\dfrac{y^2}{4}\right)-xy=2\)
\(\Rightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x+\dfrac{y}{2}\right)^2-xy\ge-xy\)
\(\Rightarrow xy\ge-2\Rightarrow P\ge2019\)
\(P_{min}=2019\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x+\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;2\right);\left(1;-2\right)\)
Tìm x; y nguyên thỏa mãn \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\) sao cho tích x.y đạt giá trị lớn nhất
Ta có: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
\(\Leftrightarrow\left(x^2+2+\frac{1}{x^2}\right)+\left(x^2-xy+\frac{y^2}{4}\right)+xy=2\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)
\(\Rightarrow2-xy\ge0\)
\(\Rightarrow xy\le2\)
Dấu bằng xảy ra khi nào, cậu làm luôn giúp tớ