Bài 1: Cho tam giác ABC cân tại B, phân giác của góc A cắt BC tại M, phân giác của góc C cắt BA tại N. Cho AB=10 cm, AC= 6 cm. Tính độ dài đoạn MN.
Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác
Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5.
a) Tính độ dài AB (câu này tớ làm đc rồi)
b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)
Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N
a) Cm: MN//AC
b) Tính MN theo a,b
Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm
a) Tính AD, DC
b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C
Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE
a) Tính độ dài đoạn thẳng AD
b) Cm: OG//AC
HD: a) AD=2,5cm b) OG//DM => OG//AC
Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N
a) CMR: MN//BC
b) Gọi giao điểm của DE và AM là O. CM: OM=ON
c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI
d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI
cho tam giác ABC cân tại B, phân giác góc A cắt BC tại M, phân giác của góc C cắt BA tại N
a) CM: tam giác ABM đồng dạng với tam giác CBN
b) CM: MN // AC
c) Cho AB=10cm, AC=6cm. tính độ dài MN
Giúp mình làm câu c nhé !
a, Vì tam giác ABC là tam giác cân nên góc BAC=góc BCA (1)
Mà AM là tia phân giác của góc BAC=> góc BAM=Góc MAC (2)
CN là tia phân giác của góc BCA nên góc BCN= góc NCA (3)
Từ (1) (2)(3) suy ra góc BAM=góc BNC
Xét 2 tam giác ABM và tam giác CBN, ta có:
Góc B chung
BAM=BCN (cmt)
=>tam giác ABM đồng dạng với tam giác CBN(g.g)
b, Vì tam giác ABM đồng dạng với tam giác CBN (theo câu a) nên ta có tỉ lệ sau:
BM/BN=BC/BA=>NM//AC( định lý Ta-lét) (đcpcm)
cho tam giác ABC cân tại B,phân giác góc A cắt BC tại M,phân giác góc C cắt AB tại N
a) chứng minh tam giác ABM~tam giác CBN
b) chứng minh MN//AC
c) cho AB=10:AC=6.Tính độ dài đoạn MN
a)Xét tam giác ABM và tam giác BCN có:
+AB=CB(Theo D/lí tam giác cân)
+Góc B chung
+AM=CN(Vì là hai cạnh tương ứng của hai tam giác bằng nhau)
=> Tam giác ABM=BCN(theo t.hợp C.G.C)\
Vậy tam giác ABM=tam giác BCN
Cho tam giác ABC cân tại A có AB=AC=5cm, BC=6cm. Phân giác góc B cắt AC tại M, phân giác góc C cắt AB tại N:
1) CM MN song song BC
2) Tính độ dài AM, MN
3) Tính diện tích AMN
Cho tam giác ABC cân tại B, phân giác của góc A cắt BC tại M, phân giác của góc C cắt BA tại N.
a) Chứng minh tam giác ABM đồng dạng tam giác CBN.
b) Chứng minh MN//AC.
c) Cho AB = 10cm; AC = 6cm. Tính độ dài đoạn thẳng MN
a) Xét \(\Delta ABM\)và \(\Delta CBN\)có :
\(\widehat{B}\)là góc chung
\(\frac{AB}{BC}=\frac{NB}{MB}\)( Do tam giác ABC cân tại B , \(AB=BC\) và \(\widehat{A}=\widehat{C}\))
\(\Rightarrow\Delta ABM\)\(\infty\)\(\Delta CBN\)\(\left(c.g.c\right)\)
b) do \(\Delta ABM\infty\Delta BCN\left(c.g.c\right)\)(chứng minh câu a)
ta có tỉ lệ : \(\frac{BM}{BC}=\frac{BN}{AB}\)=MN/AC(dpcm)
c) bạn tự làm nka câu này dễ
Cho tam giác ABC cân tại B, phân giác góc A cắt BC tại M, phân giác của góc C cắt AB tại N
a) Chứng minh ΔABM∼ΔCBN
b) Chứng minh MN//AC
c) Cho AB=10cm; AC=6cm. Tính độ dài đoạn MN
a, Xét hai tam giác ABM và CBM có:
\(\widehat{B}\) là góc chung
\(\dfrac{AB}{BC}=\dfrac{NB}{MB}\) ( Do tam giác ABC cân tại B)
=> tam giác ABM đồng dạng tam giác CBM (c.g.c)
b, Do tam giác ABM∼ tam giác CBN nên ta có tỉ lệ:
\(\dfrac{BM}{BC}=\dfrac{BN}{AB}\) => MN // AC (đpcm)
cho tam giác abc cân tại a có ab = ac = 5cm , bc = 6cm . Phân giác của góc b cắt ac tại m , phân giác của góc c cắt ab tại n
a ) cm : mn // bc
b) am = ? , mc = ? , mn = ?
c) tính diện tích tam giác amn
a) Xét ΔABC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
hay \(\dfrac{AM}{CM}=\dfrac{AB}{BC}\)(1)
Xét ΔABC có
CN là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AN}{AC}=\dfrac{BN}{BC}\)
hay \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AN}{BN}=\dfrac{AM}{MC}\)
hay MN//BC(Đpcm)
b) Ta có: \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)(cmt)
nên \(\dfrac{AM}{5}=\dfrac{CM}{6}\)
mà AM+CM=AC(M nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{5}=\dfrac{CM}{6}=\dfrac{AM+CM}{5+6}=\dfrac{AC}{11}=\dfrac{5}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AM}{5}=\dfrac{5}{11}\\\dfrac{CM}{6}=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{25}{11}\left(cm\right)\\CM=\dfrac{30}{11}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC có MN//BC(cmt)
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)(Hệ quả Định lí Ta lét)
\(\Leftrightarrow\dfrac{MN}{6}=\dfrac{25}{11}:5=\dfrac{25}{11}\cdot\dfrac{1}{5}=\dfrac{5}{11}\)
hay \(MN=\dfrac{30}{11}\left(cm\right)\)
c) Nửa chu vi của ΔABC là:
\(P_{ABC}=\dfrac{AB+AC+BC}{2}=\dfrac{5+5+6}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot3\cdot3\cdot2}=\sqrt{16\cdot9}=4\cdot3=12\left(cm^2\right)\)
Ta có: ΔANM∼ΔABC(gt)
nên \(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AM}{AC}\right)^2=\left(\dfrac{5}{11}\right)^2=\dfrac{25}{121}\)
\(\Leftrightarrow S_{ANM}=\dfrac{25}{121}\cdot12=\dfrac{300}{121}\left(cm^2\right)\)
Cho ∆ABC cân tại B,phân giác của A cắt BC tại M, phân giác của góc C cắt AB tại N.a)CM:∆ABM đồng dạng với ∆CBN.b)CM:MN //AC.c)Cho AB=10cm;AC=6cm.Tính độ dài đoạn MN
cho tam giác abc cân tại a có ab = ac = 5cm , bc = 6cm . Phân giác của góc b cắt ac tại m , phân giác của góc c cắt ab tại n
a ) cm : mn // bc
b) am = ? , mc = ? , mn = ?
c) tính diện tích tam giác amn
1. Cho tam giác ABC cân tại A. Đường phân giác góc B cắt AC tại M, đường phân giác góc C cắt AB tại N. Cm MN // BC.
2. Cho hình thoi ABCD. Trên cạnh BC, BA lần lượt lấy điểm E và F sao cho BF/BE=2/3. Đoạn thẳng FE cắt đoạn thẳng BD tại I.
a) Tính IE/IF.
b) Giả sử FE = 12cm. Tính độ dài IE và IF.
( Mình đang cần gấp mong các bạn giúp mình ạ.)
1. Ta có tam giác ABC cân tại A, do đó AB = AC.
Gọi I là giao điểm của đường phân giác góc B và đường phân giác góc C.
Ta cần chứng minh MN // BC.
Ta có:
∠BIM = ∠CIM (do I nằm trên đường phân giác góc B và đường phân giác góc C)
∠BIM = ∠CIM = ∠BIC/2 (do I nằm trên đường phân giác góc B và đường phân giác góc C)
∠BIC = ∠BAC (do tam giác ABC cân tại A)
∠BIC = ∠BAC = ∠BCA (do tam giác ABC cân tại A)
Do đó, ta có ∠BIM = ∠CIM = ∠BCA.
Từ đó, ta có MN // BC (do ∠MNI = ∠BCA và ∠MIN = ∠BAC).
Vậy ta đã chứng minh MN // BC.
2. a) Ta có BF/BE = 2/3.
Gọi x là độ dài của BE.
Do BF/BE = 2/3, ta có BF = (2/3)x.
Gọi y là độ dài của FE.
Do FE = 12cm, ta có y = 12cm.
Gọi z là độ dài của IF.
Do I là giao điểm của FE và BD, ta có IF/FE = BD/BE.
Do đó, IF/12 = BD/x.
Ta có BD = BC + CD = BC + BA = BC + BE.
Do đó, IF/12 = (BC + BE)/x.
Ta có BF/BE = 2/3, nên BF = (2/3)x.
Do đó, BC = BF + FC = (2/3)x + (1/3)x = x.
Vậy, IF/12 = (x + x)/x = 2.
Từ đó, ta có IF = 2 * 12 = 24cm.
Do đó, IE/IF = BE/FE = x/12.
Vậy, IE/IF = x/12.
b) Giả sử FE = 12cm.
Từ phần a), ta đã tính được IF = 24cm.
Do đó, IE/IF = x/12.
Ta cần tính x.
Ta có BF/BE = 2/3, nên BF = (2/3)x.
Do BF = (2/3)x và BC = x, ta có BC = BF + FC.
Do đó, x = (2/3)x + FC.
Từ đó, FC = (1/3)x.
Vậy, BC = BF + FC = (2/3)x + (1/3)x = x.
Do đó, BC = x = 12cm.
Vậy, độ dài của IE và IF lần lượt là 12cm và 24cm.
1: Xét ΔABC có BM là phân giác
nên \(\dfrac{AM}{MC}=\dfrac{AB}{BC}\)
=>\(\dfrac{AM}{MC}=\dfrac{AC}{BC}\left(1\right)\)
Xét ΔCAB có CN là phân giác
nên \(\dfrac{AN}{NB}=\dfrac{AC}{BC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AM}{MC}=\dfrac{AN}{NB}\)
Xét ΔABC có \(\dfrac{AM}{MC}=\dfrac{AN}{NB}\)
nên MN//BC