Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Minh Hieu
Xem chi tiết
Nguyễn Văn Tuấn Anh
16 tháng 10 2019 lúc 19:54

đkxđ: ....

\(\sqrt{x+4}+\sqrt{x+11}=x+27-x^2\)

\(\Leftrightarrow x+4+2\sqrt{\left(x+4\right)\left(x+11\right)}+x+1=x^2+729+x^4+54x-2x^3-54x^2\)

\(\Leftrightarrow2x+5+2\sqrt{\left(x+4\right)\left(x+11\right)}=x^4-2x^3-53x^2+54x+729\)

\(\Leftrightarrow2\sqrt{x^2+15x+44}=x^4-2x^3-53x^2+52x+724\)

\(\Leftrightarrow2\sqrt{x^2+15x+44}=\left(x-2\right)\left(x^3-53x-54\right)+616\) 

.........

Le Minh Hieu
Xem chi tiết
Agatsuma Zenitsu
21 tháng 1 2020 lúc 18:54

\(a,\left(x^2-4x+11\right)\left(x^4-8x^2+21\right)=35\)

Phương trình trên tương đương với:

\(\left[\left(x-2\right)^2+7\right]\left[\left(x^2-4\right)^2+5\right]=35\left(1\right)\)

Do: \(\hept{\begin{cases}\left(x-2\right)^2+7\ge7\forall x\\\left(x^2-4\right)^2+5\ge5\forall x\end{cases}}\Rightarrow\left[\left(x+2\right)^2+7\right]\left[\left(x^2+4\right)^2+5\right]\ge35\forall x\)

Nên: \(\left(1\right)\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2+7=7\\\left(x^2-4\right)^2+5=5\end{cases}\Leftrightarrow}x=2\)

Vậy ..................................

\(b,\sqrt{x}+\sqrt{1-x}+\sqrt{x\left(1-x\right)}=1\)

\(Đkxđ:0\le x\le1\) Đặt: \(0< a=\sqrt{x}+\sqrt{1-x}\Rightarrow\frac{a^2-1}{2}=\sqrt{x\left(1-x\right)}\)

\(+)\) Phương trình mới là: \(a+\frac{a^2-1}{2}=1\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\)

\(\Leftrightarrow a=\left\{-3;1\right\}\Rightarrow a=1>0\)

\(\sqrt{x}+\sqrt{1-x}=1\)

\(+)\) Nếu \(a=1\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)

\(\Rightarrow x=\left\{0;1\right\}\left(tm\right)\)

Vậy .............................

Khách vãng lai đã xóa
Họ Và Tên
Xem chi tiết
Edogawa Conan
21 tháng 10 2020 lúc 21:37

Đk: \(\forall x\in R\)

Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)

<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=2021\)

Lập bảng xét dầu

x                   -2                   1 

x - 1   -         |           -          0       +

x + 2   -        0         +          |            -

Xét các TH xảy ra :

TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021

<=> -2x = 2022 <=> x = -1011 (tm)

TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021

<=> 0x = 2018 (vô lí) => pt vô nghiệm

TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021

<=> 2x = 2020 <=> x = 1010 (tm)

Vậy S = {-1011; 1010}

Khách vãng lai đã xóa
Le Minh Hieu
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Kim Tuyến
Xem chi tiết
Akai Haruma
1 tháng 10 2021 lúc 6:02

Lời giải:

a. ĐKXĐ: $x\geq 0$

$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$

$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$

$\Leftrightarrow 13\sqrt{2x}=28$

$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$

$\Leftrightarrow 2x=\frac{784}{169}$

$\Leftrightarrow x=\frac{392}{169}$

b. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x-5=4$

$\Leftrightarrow x=9$ (tm)

c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$

PT $\Leftrightarrow \frac{3x-2}{x+1}=9$

$\Rightarrow 3x-2=9(x+1)$

$\Leftrightarrow x=\frac{-11}{6}$ (tm)

Nguyễn Thùy Chi
Xem chi tiết
Hà Phương
Xem chi tiết
Trịnh Hữu Khôi
Xem chi tiết
Phong
24 tháng 10 2023 lúc 19:05

\(4x^2-5x-4\sqrt{x-1}-2=0\left(x\ge1\right)\)

\(\Leftrightarrow\left(4x^2-4x+1\right)-\left(x-1+4\sqrt{x-1}+4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(\sqrt{x-1}+2\right)^2=0\)

\(\Leftrightarrow\left(2x-1-\sqrt{x-1}-2\right)\left(2x-1+\sqrt{x-1}+2\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x-1}-3\right)\left(2x+\sqrt{x-1}+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=2x-3\\\sqrt{x-1}=-\left(2x+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x\in\varnothing\end{matrix}\right.\)

Vậy với x = 2 thì thỏa mãn pt