Cho ΔABC có các góc đều nhọn. Hai đường cao BE, CF cắt nhau tại H. Chứng minh:
a. ΔAEF đồng dạng với ΔABC
b. BH.BE + CH.CF = BC\(^2\)
Cho tam giác ABC nhọn đường cao AD BE CF cắt nhau tại H .Chứng minh Tam giác HFB đồng dạng với tam giác HEC chứng minh BH.BE=BD.BC Chứng minh BH.BE + CH.CF =BC^2
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)
Do đó: ΔFHB\(\sim\)ΔEHC
Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
\(\widehat{DBH}\) chung
Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC
hay \(BD\cdot BC=BE\cdot BH\)
Xét ΔCDH vuông tại D và ΔCFB vuông tại F có
\(\widehat{DCH}\) chung
Do đó: ΔCDH~ΔCFB
=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)
=>\(CD\cdot CB=CH\cdot CF\)
\(BH\cdot BE+CH\cdot CF\)
\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)
Cho tam giác nhọn ABC Các đường cao AD, BE, CF cắt nhau tại H chứng minh rằng: a) Tâm giáo AEF đồng dạng với tam giác ABC b) BH.BE + CH.CF = BC^2 c) AD.HD
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Cho tam giác ABC nhọn. Kẻ các đường cao BE và CF cắt nhau tại H.
1) Chứng minh A E . A C = A F . A B v à Δ A E F ∽ Δ A B C .
2) Qua B kẻ đường thẳng song song với CF cắt tia AH tại M. AH cắt BC tại D. Chứng minh B D 2 = A D . D M .
3) Cho A C B ^ = 45 0 và kẻ AK vuông góc với EF tại K. Tính tỉ số S A F H S A K E .
4) Chứng minh: A B . A C = B E . C F + A E . AF
Cho ΔABC nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a/ C/m ΔAEF và ΔABC đồng dạng.
b/ Gọi I là giao điểm của AD và EF. C/m IH.AD = AI.HD.
c/ Cho AB = 10cm; AC = 17cm; BC = 21cm. Tính SΔABC
Mục tiêu -500 sp mong giúp đỡ
k giải thì thôi ở đó phá
Cho tam giác nhọn ABC, ba đường cao AD, BE và CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC. b) Chứng minh tam giác AEF đồng dạng với tam giác ABC. c) Chứng minh BH.BE + CH.CF = BC2
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
\(\widehat{EAF}\) chung
DO đó: ΔAEF\(\sim\)ΔABC
Cho tam giác ABC nhọn nội tiếp (o). Hai đường cao BE và CF cắt nhau tại H chứng minh a)BH.BE+CH.CF=BC^2 b)gọi K là điểm đối xứng với H qua BC. chứng minh K thuộc (O)
cho tam giác ABC nhọn hai đường cao BE CF cắt nhau tại H cmr
a ABE đồng dạng ACF và AEF =ABC
b BH.BE=CH.CF=BC.BC
Cho ΔABC nhọn (AB<AC) , ba đường cao AD, BE, CF cắt nhau tại H.
a, Chứng minh \(\Delta\)HFB đồng dạng \(\Delta\)HEC
b, chứng minh: BH.BE= BF.BA
c, chứng minh góc BFD bằng góc ACD
d, Lấy M là điểm đối xưng của H qua E và gọi I là giao điểm của BH với DF. Chứng minh BI.BM=BH.BE
Cho ΔABC nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a/ C/m ΔAEF và ΔABC đồng dạng.
b/ Gọi I là giao điểm của AD và EF. C/m IH.AD = AI.HD.
c/ Cho AB = 10cm; AC = 17cm; BC = 21cm. Tính \(S_{\text{Δ}ABC}\).