Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng abc > (b+c−a)(c+a−b)(a+b−c)
Cho a,b,c là độ dài ba cạnh của một tam giác vuông(c là độ dài cạnh huyền).Chứng minh rằng a^2020+b^2020<c^2020
cho tam giác ABC có độ dài ba cạnh là a,b,c sao cho a^2+b^2+c^2 = ab+bc+ca . chứng minh rằng tam giác ABC là tam giác đều
a^2+b^2+c^2=ab+bc+ac
=>2a^2+2b^2+2c^2=2ab+2bc+2ac
<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0
<=>(a-b)^2+(b-c)^2+(c-a)^2=0
=>a-b=b-c=c-a=0
=>a=b;b=c;c=a
=>a=b=c
=>tam giác abc là tam giác đều
Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng
a / b + c + b / c + a + c / c + b nhỏ hơn 2
GIẢI
Giả sử : \(a\ge b\ge c>0\) thì \(a+b\ge a+c\ge b+c\)
Ta có : \(\frac{a}{b+c}=\frac{a}{b+c}\)
\(\frac{b}{c+a}\le\frac{b}{b+c}\)
\(\frac{c}{a+b}\le\frac{c}{b+c}\)
Cộng vế theo vế ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}\)
Hay : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2\)
Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2\)
Chúc bạn học tốt !!!
GIẢI
Giả sử : a\ge b\ge c>0a≥b≥c>0 thì a+b\ge a+c\ge b+ca+b≥a+c≥b+c
Ta có : \frac{a}{b+c}=\frac{a}{b+c}b+ca=b+ca
\frac{b}{c+a}\le\frac{b}{b+c}c+ab≤b+cb
\frac{c}{a+b}\le\frac{c}{b+c}a+bc≤b+cc
Cộng vế theo vế ta được :
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}b+ca+c+ab+c+bc≤b+ca+b+c
Hay : \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2b+ca+c+ab+c+bc≤b+ca+1<1+1=2
Vậy \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2b+ca+c+ab+c+bc<2
Chứng minh rằng nếu a + b , b + c , c + a là độ dài ba cạnh của một tam giác thì \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) cũng là độ dài 3 cạnh của một tam giác
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
Cho \(a,b,c\)là độ dài ba cạnh của một tam giác. Chứng minh rằng \(abc\ge\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\).
Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :
Đặt x= mẫu thứ nhất (1)
y=mẫu thứ hai (2)
z=mẫu thứ ba (3)
Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.
Sau đó rút c= x+y/2(@@@)
Tương tự với (2) và (3), (1) và (2)
Ta có b=x+z/2(@@)... a=y+z/2(@)
Cộng vế với vế của (@), (@@), (@@@) ta có
vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)
Đặt 1/2 ra sau đó tách các phân số ra như sau
\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)
Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại
ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu
đặt , a+b-c , c+a-b , a+b-c = x,y,z
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\)
\(a=\frac{\left(y+z\right)}{2},b=\frac{\left(x+z\right)}{2},c=\frac{\left(x+y\right)}{2}\)
như vậy Pt phải là
\(\frac{\left(y+z\right)}{\frac{2}{x}}+\frac{\left(x+z\right)}{\frac{2}{y}}+\frac{\left(x+y\right)}{\frac{2}{z}}\)
vì (b+c-a) =x
Đa giang sai chắc chắn luôn
cho tam giác abc có bc=a ac=b ab=c
a/chứng minh rằng nếu góc a = 2 lần góc b thì a^2=b^2+bc và ngược lại
b/tính độ dài các cạnh của tam giác abc thỏa điều kiện trên biết độ dài ba cạnh tam giác là 3 số tự nhiên liên tiếp
Cho a,b,c là độ dài ba cạnh của một tam giác , chứng minh rằng :
\(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
Đặt \(x=b+c-a,y=c+a-b,z=a+b-c\) , khi đó : \(\begin{cases}2a=y+z\\2b=x+z\\2c=x+y\end{cases}\)
Ta có : \(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)
\(\ge2+2+2=6\)
\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
ta có \(\frac{a}{b+c}-1+\frac{b}{a+c}-1+\frac{c}{a+b}-1=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-3\) vì a b c là cách cạnh của tam giác nên biểu thức trên >= 3
Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Ta có : \(\hept{\begin{cases}\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\forall a,b,c\\\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\forall a,b,c\\\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\forall a,b,c\end{cases}}\)
Nhân vế với vế của 3 bất đẳng thức trên ta được :
\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên \(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)
\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)>0\)
Mà dễ thấy \(abc>0\)
Nên từ \(\left(1\right)\) : \(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)
Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:
\(\frac{a}{3a-b+c}+\frac{b}{3b-c+a}+\frac{c}{3c-a+b}\ge1\)
Đặt:
x = a + c - b ; y = a + b - c ; z = b + c - a > 0 vì a; b ; c là độ dài 3 cạnh của 1 tam giác
=> x + y + z = a + b + c
=> a = \(\frac{x+y}{2}\); b = \(\frac{y+z}{2}\); c = \(\frac{x+z}{2}\)
=> 3a - b + c = 2 a + ( a - b + c ) = ( x + y ) + x = 2x + y
Tương tự: 3b - c + a = 2y + z ; 3c - a + b = x + 2z
Đưa về bài toán: Chứng minh:
\(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)
<=> \(\frac{2x+2y}{2x+y}+\frac{2y+2z}{2y+z}+\frac{2z+2x}{2z+x}\ge4\)(1)
Ta có: VT = \(1+\frac{y}{2x+y}+1+\frac{z}{2y+z}+1+\frac{x}{2z+x}\)
\(=3+\left(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\right)\)
\(=3+\left(\frac{y^2}{2xy+y^2}+\frac{z^2}{2yz+z^2}+\frac{x^2}{2zx+x^2}\right)\)
\(\ge3+\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=3+1=4\)
=> (1) đúng
=> Bất đẳng thức ban đầu đúng
Dấu "=" xảy ra <=> x = y = z <=> a = b = c