Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngô xuân tùng
Xem chi tiết
Thuỳ Linh Nguyễn
8 tháng 8 2023 lúc 22:33

bạn Tham khảo bài bạn này 

nguyễn thị hạnh
Xem chi tiết
chelsea
20 tháng 12 2016 lúc 21:43

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2=2ab+2bc+2ac

<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0

<=>(a-b)^2+(b-c)^2+(c-a)^2=0

=>a-b=b-c=c-a=0

=>a=b;b=c;c=a

=>a=b=c

=>tam giác abc là tam giác đều

Xem chi tiết
Kudo Shinichi
21 tháng 9 2019 lúc 15:30

GIẢI

 Giả sử : \(a\ge b\ge c>0\) thì \(a+b\ge a+c\ge b+c\)

 Ta có : \(\frac{a}{b+c}=\frac{a}{b+c}\)

          \(\frac{b}{c+a}\le\frac{b}{b+c}\)

           \(\frac{c}{a+b}\le\frac{c}{b+c}\)

Cộng vế theo vế ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}\)

Hay : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2\)

Chúc bạn học tốt !!!

Hoàng hôn  ( Cool Team )
21 tháng 9 2019 lúc 15:48

GIẢI

 Giả sử : a\ge b\ge c&gt;0abc>0 thì a+b\ge a+c\ge b+ca+ba+cb+c

 Ta có : \frac{a}{b+c}=\frac{a}{b+c}b+ca​=b+ca

          \frac{b}{c+a}\le\frac{b}{b+c}c+ab​≤b+cb

           \frac{c}{a+b}\le\frac{c}{b+c}a+bc​≤b+cc

Cộng vế theo vế ta được :
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}b+ca​+c+ab​+c+bc​≤b+ca+b+c

Hay : \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1&lt; 1+1=2b+ca​+c+ab​+c+bc​≤b+ca​+1<1+1=2

Vậy \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}&lt; 2b+ca​+c+ab​+c+bc​<2

ANHOI
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 8 2016 lúc 7:19

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

Admin (a@olm.vn)
Xem chi tiết
phan gia huy
Xem chi tiết
Đà Giang
25 tháng 1 2018 lúc 21:37

Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :

Đặt x= mẫu thứ nhất (1)

       y=mẫu thứ hai (2)

        z=mẫu thứ ba (3)

Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.

Sau đó rút c= x+y/2(@@@)

Tương tự với (2) và (3), (1) và (2)

Ta có b=x+z/2(@@)... a=y+z/2(@)

Cộng vế với vế của (@), (@@), (@@@) ta có 

vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)

Đặt 1/2 ra sau đó tách các phân số ra như sau 

\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)

Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại 

Phan Thị Hà Vy
27 tháng 1 2018 lúc 14:35

ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu

Pain Thiên Đạo
14 tháng 2 2018 lúc 10:52

đặt , a+b-c  , c+a-b , a+b-c = x,y,z

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\)

\(a=\frac{\left(y+z\right)}{2},b=\frac{\left(x+z\right)}{2},c=\frac{\left(x+y\right)}{2}\)

như vậy Pt phải là

\(\frac{\left(y+z\right)}{\frac{2}{x}}+\frac{\left(x+z\right)}{\frac{2}{y}}+\frac{\left(x+y\right)}{\frac{2}{z}}\)

vì (b+c-a) =x 

Đa giang sai chắc chắn luôn

nguyễn văn nhật nam
Xem chi tiết
bảo minh
Xem chi tiết
Hoàng Lê Bảo Ngọc
19 tháng 8 2016 lúc 13:34

Đặt \(x=b+c-a,y=c+a-b,z=a+b-c\) , khi đó : \(\begin{cases}2a=y+z\\2b=x+z\\2c=x+y\end{cases}\)

Ta có : \(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)

                                                  \(\ge2+2+2=6\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)

nguyễn thơ
30 tháng 8 2016 lúc 21:20

ta có \(\frac{a}{b+c}-1+\frac{b}{a+c}-1+\frac{c}{a+b}-1=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-3\)     vì a b c là cách cạnh của tam giác nên biểu thức trên >= 3                                                                           

Nguyễn Thành Đạt
Xem chi tiết

Ta có : \(\hept{\begin{cases}\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\forall a,b,c\\\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\forall a,b,c\\\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\forall a,b,c\end{cases}}\)

Nhân vế với vế của 3 bất đẳng thức trên ta được : 

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên \(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)

\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)>0\)

Mà dễ thấy \(abc>0\)

Nên từ \(\left(1\right)\) : \(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)

Khách vãng lai đã xóa
Xinnmeii (Hân)
Xem chi tiết
Nguyễn Linh Chi
2 tháng 8 2020 lúc 0:43

Đặt: 

x = a + c - b ; y = a + b - c ; z = b + c - a > 0 vì a; b ; c là độ dài 3 cạnh của 1 tam giác 

=> x + y + z = a + b + c 

=> a = \(\frac{x+y}{2}\); b = \(\frac{y+z}{2}\); c = \(\frac{x+z}{2}\)

=> 3a - b + c = 2 a + ( a - b + c ) =  ( x  + y ) + x = 2x + y 

Tương tự: 3b - c + a = 2y + z ; 3c - a + b =  x + 2z

Đưa về bài toán: Chứng minh: 

\(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)

<=> \(\frac{2x+2y}{2x+y}+\frac{2y+2z}{2y+z}+\frac{2z+2x}{2z+x}\ge4\)(1)

Ta có: VT = \(1+\frac{y}{2x+y}+1+\frac{z}{2y+z}+1+\frac{x}{2z+x}\)

\(=3+\left(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\right)\)

\(=3+\left(\frac{y^2}{2xy+y^2}+\frac{z^2}{2yz+z^2}+\frac{x^2}{2zx+x^2}\right)\)

\(\ge3+\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=3+1=4\)

=> (1) đúng 

=> Bất đẳng thức ban đầu đúng

Dấu "=" xảy ra <=> x = y = z <=>  a = b = c

Khách vãng lai đã xóa