Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen lan anh
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2021 lúc 13:19

\(P=\dfrac{4x^2+2xy-\left(x^2+y^2\right)}{2xy-2y^2+3\left(x^2+y^2\right)}=\dfrac{3x^2+2xy-y^2}{3x^2+2xy+y^2}\)

Biểu thức này không tồn tại max mà chỉ tồn tại min

\(P=\dfrac{-2\left(3x^2+2xy+y^2\right)+9x^2+6xy+y^2}{3x^2+2xy+y^2}=-2+\dfrac{\left(3x+y\right)^2}{2x^2+\left(x+y\right)^2}\ge-2\)

Nguyễn Việt Lâm
8 tháng 4 2021 lúc 21:37

Bạn coi lại mẫu số

Hoa
Xem chi tiết
Sam
23 tháng 1 2017 lúc 11:28

mk ko biết, nhìn hoi phức tạp nhỉ

Thuy Le
Xem chi tiết
ngonhuminh
18 tháng 1 2017 lúc 22:54

\(A_{min}=8-\frac{25}{4}\) khi x=5/2

Bmin=xem lại đề đúng như đề Bmin=5 khi x=0

C=8+25-(2x+5)^2

Cmax=8+25 khi x=-5/2 

Dmax=9 khi x=0

vu thi khanh ngoc
Xem chi tiết
Đặng Thủy Tiên
Xem chi tiết
☆MĭηɦღAηɦ❄
3 tháng 4 2020 lúc 17:51

\(D=\frac{4x+3}{x^2+1}\)

Min D : 

\(D=\frac{x^2+4x+4-x^2-1}{x^2+1}\)

\(=\frac{\left(x+2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Ta thấy : \(\frac{\left(x+2\right)^2}{x^2+1}\ge0\forall x\)

\(\Rightarrow D\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\)

Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Max D : 

\(D=\frac{4x+3}{x^2+1}=\frac{-4x^2+4x-1+4x^2+4}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2+4\left(x^2+1\right)}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2}{x^2+1}+4\)

Ta thấy : \(\frac{-\left(2x-1\right)^2}{x^2+1}\le0\forall x\)

\(\Rightarrow D=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Khách vãng lai đã xóa
Thuy Le
Xem chi tiết
ngonhuminh
18 tháng 1 2017 lúc 23:07

Cụ thể mức nào nhỉ tất cả dự trên HĐT \(\left(a+-b\right)^2=a^2+-2ab+b^2\)

cụ thể con A

\(A=x^2-2.\frac{5}{2}x+\left(\frac{5^2}{2^2}\right)+8-\frac{25}{4}\) đã thêm 25/4 =b vào phần đầu => trừ đi 

\(A=\left(x-\frac{5}{2}\right)^2+8-\frac{25}{4}=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow A\ge\frac{7}{4}\)đẳng thức khi x-5/2=0=> x=5/2

ngonhuminh
18 tháng 1 2017 lúc 23:00

A=(x-5/2)^2+8-25/4=> Amin=7/4 khi x=5/2

B --> xem lại theo đề Bmin =5 khi x=0

C =8+25-(2x+5)^2=> C max=32 khi x=-5/2

D max=9 khi x=0

Hoàng Nữ Linh Đan
Xem chi tiết
hanvu
Xem chi tiết
ST
13 tháng 7 2019 lúc 18:52

ĐKXĐ: \(x\ge1;y\ge25\)

\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)

Vì x>=1,y>=25 => x-1>=0,y-25>=0 

=> D >= 0

Dấu "=" xảy ra <=> x=1,y=25

Vậy MinD=0 khi x=1,y=25

Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)

=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)

Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)

Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:

\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)

=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)

Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)

Dấu "=" xảy ra <=> x=2,y=50

Vậy MaxD = 1/5 khi x=2,y=50