Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cỏ dại
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
I don
30 tháng 3 2018 lúc 13:08

ta có: \(a_1+a_2+a_3< a_3+a_3+a_3\Rightarrow a1+a2+a3< a3.3\)

\(a4+a5+a6< a6+a6+a6\Rightarrow a4+a5+a6< a6.3\)

\(a7+a8+a9< a9+a9+a9\Rightarrow a7+a8+a9< a9.3\)

\(\Rightarrow\frac{a1+a2+a3+...+a9}{a3+a6+a9}< a3.3+a6.3+a9.3\)  ( vì a3 ; a6; a9 >0 )

\(\Rightarrow\frac{a1+a2+a3+...+a9}{a3+a6+a9}< 3.\left(a3+a6+a9\right)\)

\(\Rightarrow a1+a2+a3+...+a9< 3\)

\(\Rightarrow\frac{a1+a2+a3+...+a9}{a3+a6+a9}< 3\left(đpcm\right)\)

CHÚC BN HỌC TỐT!!!!!

Chuột yêu Gạo
Xem chi tiết
Hải Đăng
30 tháng 9 2017 lúc 21:15

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=......\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+....+a_9}{a_2+a_3+.....+a_1}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\\\dfrac{a_2}{a_3}=1\Rightarrow a_2=a_3\\\dfrac{a_9}{a_1}=1\Rightarrow a_9=a_1\end{matrix}\right.\)

\(\Rightarrow a_1=a_2=....a_9\)

Vậy ......

Chúc bạn học tốt!

Đại gia không tiền
Xem chi tiết
ST
16 tháng 7 2017 lúc 9:53

Áp dụng  tính chất của dãy tỉ số bằng nhau:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_9}{a_1}=\frac{a_1+a_2+...+a_9}{a_2+a_3+...+a_1}=1\)

Ta có: \(\frac{a_1}{a_2}=1\Rightarrow a_1=a_2\) (1)

\(\frac{a_2}{a_3}=1\Rightarrow a_2=a_3\) (2)

..........

\(\frac{a_9}{a_1}=1\Rightarrow a_9=a_1\) (9)

Từ (1),(2),...(9) suy ra a1 = a2 = a3 = .... = a9 (đpcm)

Lê Vũ Anh Thư
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
Nguyễn Thị Diệu Thảo
Xem chi tiết
Huong Vu
Xem chi tiết
Đào Đức Mạnh
30 tháng 7 2015 lúc 15:22

a1+a2+...+a9/a3+a6+a9<a3+a3+a3+a6+a6+a6+a9+a9+a9/a3+a6+a9 (Vì a1<a2<...<a9)= 3(a3+a6+a9)/a3+a6+a9=3

Cô gái thất thường (Ánh...
Xem chi tiết
_Never Give Up_ĐXRBBNBMC...
24 tháng 2 2019 lúc 20:25

Giải:

Đặt c1=a1−b1;c2=a2−b2;...;c5=a5−b5

Xét tổng c1+c2+c3+...+c5 ta có:

c1+c2+c3+...+c5

=(a1−b1)+(a2−b2)+...+(a5−b5)

=0

c1;c2;c3;c4;c5 phải có một số chẵn

c1.c2.c3.c4.c5⋮2

Vậy (a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2 (Đpcm)

Phần a:Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=...=\frac{a8}{a9}=\frac{a9}{a1}=\frac{a1+a2+...+a9}{a2+a3+...+a1}=1\)

=>Tử số = mẫu số.

Phần b:Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c+a-b+c}{a+b-c+a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2a+2c}{2a-2c}=\frac{a+c}{a-c}=\frac{2b}{2b}=1\)

=>a+c=a-c

<=>2c=0

<=>c=0.

thanh
11 tháng 3 2020 lúc 14:39

Đặt c1=a1−b1;c2=a2−b2;...;c5=a5−b5c1=a1−b1;c2=a2−b2;...;c5=a5−b5

Xét tổng c1+c2+c3+...+c5c1+c2+c3+...+c5 ta có:

c1+c2+c3+...+c5c1+c2+c3+...+c5

=(a1−b1)+(a2−b2)+...+(a5−b5)=(a1−b1)+(a2−b2)+...+(a5−b5)

=0=0

⇒c1;c2;c3;c4;c5⇒c1;c2;c3;c4;c5 phải có một số chẵn

⇒c1.c2.c3.c4.c5⋮2⇒c1.c2.c3.c4.c5⋮2

Vậy (a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2(a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2 (Đpcm)

Khách vãng lai đã xóa