Cho a/b = c/d. CM : (a-b / c-d)2=a.b/c.d
Cho a/b=c/d cm rằng a)a/a-b=c/c-d
b) a/b=a+c/b+d
c) a/3a+b=c/3c+d
d)a.b/bd=a^2+c^2/b^2+d^2
E) a.b/c.d=a^2-b^2/c^2-d^2
F) a.b/c.d=(a-b)^2/(c-d)^2
cho a/b=c/d khac 1 va c khac 0
CMR:
a)((a.b)/(c.d))^2=(a.b)/(c-d)
b)((a.b/c.d))^3=((a^3-b^3)/(a^3-d^3))
Cho a/b = c/d . CMR a^2 - b^2 / c^2 - d^2 = a.b / c.d
Cho tỉ lệ thức: a/b = c/d
CMR ta có tỉ lệ thức sau: ab/cd = (a² - b²)/(c² - d²)
Mình nghĩ bài này phải có thêm đk là c ≠ d nữa mới đủ ^^
Từ giả thiết: a/b = c/d --> a/c = b/d
Theo tính chất tỉ lệ thức thì ta có:
a/c = b/d = (a - b)/(c - d) = (a + b)/(c + d)
Ta lấy: a/c = (a - b)/(c - d)
và lấy: b/d = (a + b)/(c + d)
--> (a/c).(b/d) = (a - b)/(c - d) . (a + b)/(c + d)
--> ab/cd = (a² - b²)/(c² - d²) --> đpcm
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\frac{2.a^2-3.a.b+3.b^2}{2.b^2+3.a.b}=\frac{2.c^2-3.c.d+5.d^2}{2.d^2+3.c.d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)
\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)
\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)
Từ (1) và (2) suy ra ĐPcm
cho a/b=c/d chứng minh rằng a.b/c.d=(a+b)^2/(c+d)^2 . ( giúp mình với nha )
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
cho a/b=c/d chứng minh a.b/c.d=((a+b)^2/c+d)^2
cho a/b=c/d
chung minh :
a.b/c.d = (a-b)^2/(c-d)^2
cho \(\frac{a}{b}=\frac{c}{d}\)cm \(\left(\frac{a-b}{c-d}\right)^2=\frac{a.b}{c.d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)
Ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\)
\(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)
=>\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\)
=>\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a.b}{c.d}\)
cho các số thực a,b,c,d thỏa mãn |a.b|=1 và |c.d|=1
CM: a2/2a2+c2=d2/b2+2d2