Cho x, Y, z khác 0 thỏa mãn (x-y-z) ^2=x^2+y^2+z^2 Cm 1/x^3 -1/y^3 -1/z^3=3/xyz
cho x+y+z=0 và x^2+y^2+z^2=1,x^3+y^3+z^3=1,tính P=(x-1)1^7+(y-1)^9+(z-1)^1997
Cho x,y,z khác 0 thỏa mãn \((1/x +1/y+1/z)^2 Chứng minh x^3+y^3+z^3=3xyz= 1/x^2 + 1/y^2 +1/z^2\)
1)Phân tích thành nhân tử:
a. (((x^2)+(y^2))^2)((y^2)-(x^2))+(((y^2)+(z^2))^2)((z^2)-(y^2))+(((z^2)+(x^2))^2)((x^2)-(z^2))
b. ((x-a)^4)+4a^4
c. (x^4)-(8x^2)+4
d. (x^8)+(x^4)+1
e. x((y^2)-(z^2))+y((z^2)-(x^2))+z((x^2)-(y^2))
f. (8x^3)(y+z)-(y^3)(z+2x)-(z^3)(2x-y)
g. (12x-1)(6x-1)(4x-1)(3x-1)-5
2) Cho (a^3)+(b^3)+(c^3)=3abc và abc khác 0. Tính A=(1+a/b)(1+b/c)(1+c/a).
3) Rút gọn phân thức:
((x^3)+(y^3)+(z^3)-3xyz)/(((x-y)^2)+((y-z)^2)+((z-x)^2))
bài 1: tìm x,y
a, x+1/3=y-1/5=z+2/7 và 2y+2z=35
b,4x/5=7y/9 và x-y= -5
c, x/5=y/3 và x^2-y^2=16 (x,y>0)
bài 2:
a, x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
b, x/2=y/3=z/5 và xyz=810
c, x/y+z+1=y/x+z+1=z/x+y+1=x+y+z
cho `x,y,z` khác `0` thỏa mãn `x + y/2 + z/3 = 1` và `1/x + 2/y + 3/z =0`. Chứng tỏ `A= x^2 + (y^2)/4 + (z^2)/9 =1`
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)
=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)
=>yz+2xz+3xy=0
=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)
\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)
=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)
=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)
=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)
=>A+xy+2/3xz+1/3yz=1
=>A=1
cho x,y,z khác 0 và x khác y khác z , thỏa mãn :
x^2 -xy = y^2-yz = z^2 - zx = a
1 ) cmr : a khác 0
2) cmr ; 1/x + 1/y + 1/z = 0
3 ) tính M = x/z + z/y + y /x
2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)
lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)
lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\)
lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)
cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)
1) \(a=x^2-xy=x\left(x-y\right)\ne0\left(x\ne0,x\ne y\right)\)
mik cần c3 , ai làm giúp mik đc ko
1) Rút gọn bt:
(x+y+z)3+(x-y-z)3+(y-x-z)3+(z-y-x)3
2)Tìm x,y,z t/m: 9x2+y2+2z2-18x+4z-6y+20=0
3)Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\)=1 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\)=0 . CMR:
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)=1
Tìm x, y, z
x3/8= y3/27 = z3/64 và x2+2y2-3z2 = -650
x/ y+z+1 = y/ x+z+2 = z/y+z+3= x+y+z cho x, y, z <>0 thoả y+z+x/x= z+y-y/y= x+y-z/z
Tính B= (1+ x/y). (1+y/z) .(1+z/x)