Cho ΔABC vuông tại A. Tia phân giác BE(E∈AC). Kẻ EK⊥BC(KϵBC). Gọi H là giao điểm của BA và KE. CMR:
a)ΔABE=ΔKBE
b)AH=KC
c) Tổng ba cạnh của ΔAEH luôn lớn hơn HC
P/s: Giúp mik vs
cho tam giác ABC vuông tại A. Đường phân giác BE (E thuộc AC). Kẻ EK vuông góc với BC ( K thuộc BC). Gọi H là giao điểm của BA và KE. Chứng minh:
a) tam giác ABE = tam giác KBE
b) AH = KC
c) Tổng ba cạnh của tam giác AEH luôn lớn hơn HC
mk làm đc phần a vs b nhưng phần c mk ko làm đc
Bài 4: (3,5 đ) Cho tam giác ABC vuông tại A, phân giác BE. Kẻ EK vuông góc với BC tại K. Gọi M là giao điểm của BA và KE. Chứng minh :
a) ΔABE = ΔKBE
b) EM = EC
c) AK // MC mn ơi giúp em với tý em nộp r ạ
cho tam giác abc vg tại a . ĐƯờng phân giác BE(E thuộc AC). Kẻ EK vg với BC(K thuộc BC) . Gọi H là giao điểm của BA và KE.C/m +3 cạnh của tam giác AEH luôn lớn hơn HC
Cho tgABC vuông tại A, vẽ tia fân giác của góc B cắt cạnh AC tại E ( E thuộc AC). trên cạnh BC lấy điểm K sao cho BK=BA.
a. CMR: tgABE=tgKBE
b. tính số đo góc BKE
c. Vẽ AH vuong goc vs BC (H thuoc BC). CMR: AH song song vs EK
d. Gọi I là giao điểm của tia KE & BA. CMR: BE là đường trung trực của CI
cac bn cô găng giup minh nha!
Cho tam giác ABC vuông tại A.Đường phân giác BE(E thuộc AC).Kẻ EK vuông góc với BC(K thuộc BC).Gọi H là giao điểm của BA và KE.
Chứng minh:a) AE=KE
b)Tam giác AHE= tam giác KEC
c) Tổng ba cạch của tam giác AEH luôn lớn hơn HC.
Help me ai xong trước mk tick cho :)))))))
Bạn tự trình bày theo các ý sau nhé, mình k có nhiều tgian nên tb ngắn gọn chút
a) Xét tam giác vuông ABE và tam giác vuông KBE
có; b1 = b2 do phân giác đề bài cho, BE cạnh chung, hai góc vuông của hai tam giác trên
=> bằng nhau theo th cạnh huyền gn => AE=KE
b) Xét hai tam giác trên có: AE= KE (gt), e1=e2(đối đỉnh) hai góc vuông của hai tam giác bằng nhau = 90
=> hai tam giác bằng nhau theo th cạnh góc vuông- góc nhọn kề
c) ta có: AE= KE(cmt) (1)
Ah=KC(câu b) (2)
áp dụng bất đẳng thức vào tam giác KCH:
kh+kc>hc hay ke+eh+hc>hc(3)
từ 1 2 3 => AE +HE+AH> HC
bạn ti c k cho mình nha
thk you very much như đã hứa nha!!!
Cho tam giác ABC vuông tại A có BE là tia phân giác của góc B ( E thuộc AC). Từ E kẻ ED vuông góc với BC tại D.
a) Chứng minh ΔABE = ΔDBE.
b) Chứng minh BE ⊥ AD
c) Gọi F là giao điểm của tia BA và tia DE. Chứng minh tam giác EFC cân tại E.
Giúp mik với
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔBAE=ΔBDE
b: ta có: ΔBAE=ΔBDE
nên BA=BD và EA=ED
=>BE là đường trung trực của AD
hay BE\(\perp\)AD
Cho tam giác ABC vuông tại A, phân giác BE. Kẻ EK vuông góc với BC tại K. Gọi M là giao điểm của BA và KE. Chứng minh :
a) ΔABE = ΔKBE
b) EM = EC
c) AK // MC
d) Gọi N là trung điểm của MC. Chứng minh 3 điểm B, E, N thẳng hàng
Các bạn giúp mình với
a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔABE=ΔKBE
b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K có
EA=EK
\(\widehat{AEM}=\widehat{KEC}\)
Do đó: ΔAEM=ΔKEC
Suy ra: EM=EC
c: Xét ΔBMC có BA/AM=BK/KC
nên AK//MC
Bài 4 Cho ΔABC có AB = 5cm, AC = 12cm, BC = 13cm. a) Chứng minh ΔABC vuông. b) Vẽ tia phân giác của góc B cắt cạnh AC tại E. Từ E kẻ ED vuông góc BC. Chứng minh BA = BD, EA = ED. c) Gọi K là giao điểm của hai tia BA và DE. Chứng minh EK = EC.
Tin nhắn đã được thu hồi
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔBAE=ΔBDE
Suy ra: BA=BD; EA=ED
c: Xét ΔAEK vuông tại A và ΔDEC vuông tại D có
EA=ED
\(\widehat{AEK}=\widehat{DEC}\)
Do đó:ΔAEK=ΔDEC
Suy ra: EK=EC
Cho ΔABC vuông tại A, đường phân giác BE. Kẻ EH ⏊BC (H thuộc BC). Gọi K là
giao điểm của AB và HE. Chứng minh rằng:
a) ΔABE = ΔHBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC
d) AE < EC
a) Xét hai tam giác vuông ΔABE và ΔHBE có:
∠ABE = ∠HBE (BE là tia phân giác giả thiết)
BE cạnh chung
⇒ ΔABE = ΔHBE (cạnh huyền - góc nhọn)
Vậy ΔABE = ΔHBE
b) AB = HB (2 cạnh tương ứng)
⇒ B thuộc đường trung trực của đoạn AH (1)
AE=HE (2 cạnh tương ứng)
⇒ E thuộc đường trung trực của đoạn AH (2)
Từ (1) và (2) ⇒ BE là đường trung trực của đoạn AH
Vậy BE là đường trung trực của đoạn AH
c) Xét hai tam giác vuông ΔAEK và ΔHEC có:
∠AEK = ∠HEC (đối đỉnh)
AE = HE (cmt)
⇒ ΔAEK = ΔHEC (cạnh góc vuông - góc nhọn)
⇒ EK = EC (2 cạnh tương ứng) (3)
Vậy EK = EC
d) Ta có: ΔAEK vuông tại A
⇒ ∠K<∠A
⇒ AE<KE (4)
Từ (3) và (4) ⇒ AE<EC
Vậy AE<EC
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABE=ΔHBE(Cạnh huyền-góc nhọn)
b) Ta có: ΔABE=ΔHBE(cmt)
nên BA=BH(Hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EA=EH(cmt)
nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BE là đường trung trực của AH
c) Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH(cmt)
\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)
Do đó: ΔAEK=ΔHEC(Cạnh góc vuông-góc nhọn kề)
Suy ra: EK=EC(Hai cạnh tương ứng)
d) Ta có: EA=EH(cmt)
mà EH<EC(ΔEHC vuông tại H)
nên AE<CE