Cho \(C=\dfrac{10-x}{x-3}\) Tìm x \(\in\) Z để C đạt GTNN
tìm x \(\in\)Z để biểu thức đạt GTNN
C = | x - 1 | + | x - 2 | + | x - 3 | + | x - 4 |
Cho x\(\in Z\)và 159</x-5/<170
a. Có thể nói rằng /x-5/<169 và /x-5/>160 được ko
b Tìm x\(\in Z\)để /x-5/ đạt GTNN
c. Tìm x\(\in Z\)để /x-5/ đạt GTLN
a) không
b) nhỏ nhất \(\orbr{\begin{cases}x-5=160\Rightarrow x=165\\x-5=-160\Rightarrow x=-155\end{cases}}\)
c) Lớn nhất \(\orbr{\begin{cases}x-5=169\Rightarrow x=174\\x-5=-169\Rightarrow x=-164\end{cases}}\)
Cho x\(\in Z\)và 159</x-5<170
a Có thể nói rằng /x-5/<169 và /x-5/>160
b Tìm x \(\in Z\)để /x-5/ đạt GTNN
c Tìm x\(\in Z\)để/x-5/ đạt GTLN
a) không chỉ có thể nói \(160\le x\le169\) muốn dùng số 160, 169 thì phải thêm dấu lớn hơn hoặc "="
cho phân số C=\(\dfrac{3.|x|+2}{4|x|-5}\) (x∈Z)
a) tìm x∈Z để C đạt giá trị lớn nhất, tìm giá trị lớn nhất đó
b) tìm x∈Z để C là số tự nhiên
tìm x để C \(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\) đạt GTNN
Sửa đề: Tìm giá trị lớn nhất
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(C=\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\)
\(\sqrt{x}-2>=-2\forall x\) thỏa mãn ĐKXĐ
=>\(\dfrac{2}{\sqrt{x}-2}< =-1\forall x\) thỏa mãn ĐKXĐ
=>\(\dfrac{2}{\sqrt{x}-2}+1< =-1+1=0\forall x\) thỏa mãn ĐKXĐ
=>\(C< =0\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0
tìm x để C \(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\) đạt GTNN
Sửa đề: Tìm x để C đạt GTLN
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(C=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\)
\(\sqrt{x}-2>=-2\forall x\) thỏa mãn ĐKXĐ
=>\(\dfrac{2}{\sqrt{x}-2}< =-\dfrac{2}{2}=-1\forall x\) thỏa mãn ĐKXĐ
=>\(\dfrac{2}{\sqrt{x}-2}+1< =-1+1=0\forall x\) thỏa mãn ĐKXĐ
=>C<=0 với mọi x thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0
Vậy: \(C_{max}=0\) khi x=0
A=\(\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{x}{x-1}\right)\)
a, rút gọn A
b, tìm \(x\in Z\) để \(A\in Z\)
c, tìm x để A đạt GTNN
a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-x}{x-1}\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{-x+\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(-x+\sqrt{x}+1\right)}\)
b: Để A là số nguyên thì \(\left(\sqrt{x}-1\right)^2⋮\left(\sqrt{x}+1\right)\left(-x+\sqrt{x}+1\right)\)
=>x=0
A= \(\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{x}{x-1}\right)\)
a, rút gọn A
b, tìm \(x\in Z\) để \(A\in Z\)
c, tìm x để A đạt GTNN
a:
Sửa đề: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}+2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{x}{x-1}\right)\)
\(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-x}{x-1}\)
\(=\dfrac{x-1-2\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{-x+\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}\cdot\dfrac{1}{-x+\sqrt{x}+1}=\dfrac{-\sqrt{x}+3}{x-\sqrt{x}-1}\)
b: Để A là số nguyên thì \(\sqrt{x}\left(-\sqrt{x}+3\right)⋮x-\sqrt{x}-1\)
=>\(-x+3\sqrt{x}⋮x-\sqrt{x}-1\)
=>\(-x+\sqrt{x}+1+2\sqrt{x}-1⋮x-\sqrt{x}-1\)
=>\(x=0\)
Tìm x thuộc Z để biểu thức :
\(b,B=|x-2|+|x-3|+|x-4|\) Đạt GTNN
\(c,C=|x-1|+|x-2|+|x-3|+|x-4|\) Đạt GTNN
Ta có B=\(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|=\left|x-2\right|+\left|4-x\right|+\left|x-3\right|\ge\left|x-2+4-x\right|+\left|x-3\right|=2+\left|x-3\right|\ge2\)
Dấu = xảy ra <=> x=3
c) Ta có C=\(\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|=4\)
Dấu = xảy ra <=> \(2\le x\le3\)
^_^
b) Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge x-2\\\left|x-3\right|\ge0\\\left|x-4\right|=\left|4-x\right|\ge4-x\end{cases}}\)
\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-2\right)+\left(4-x\right)\)
\(\Rightarrow B\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-3=0\\4-x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
Vậy, MinP \(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)