Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Huy
Xem chi tiết
Dương Nguyễn Hà My
Xem chi tiết
Ngân Lê Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2021 lúc 21:14

a) Ta có: AB//CD(AB và CD là hai đáy của hình thang ABCD)

nên AB//MC

Xét ΔAFB và ΔCFM có 

\(\widehat{FAB}=\widehat{FCM}\)(hai góc so le trong, AB//MC)

\(\widehat{AFB}=\widehat{CFM}\)(hai góc đối đỉnh)

Do đó: ΔAFB\(\sim\)ΔCFM(g-g)

nên \(\dfrac{FA}{FC}=\dfrac{FB}{FM}=\dfrac{AB}{CM}\)

mà CM=DM(M là trung điểm của CD)

nên \(\dfrac{BF}{FM}=\dfrac{AB}{DM}\)(1)

Ta có: AB//CD(Hai cạnh đáy của hình thang ABCD)

nên AB//DM

Xét ΔABE và ΔMDE có 

\(\widehat{ABE}=\widehat{MDE}\)(hai góc so le trong, AB//DM)

\(\widehat{AEB}=\widehat{MED}\)(hai góc đối đỉnh)

Do đó: ΔABE\(\sim\)ΔMDE(g-g)

nên \(\dfrac{AB}{DM}=\dfrac{AE}{EM}\)(2)

Từ (1) và (2) suy ra \(\dfrac{BF}{FM}=\dfrac{AE}{EM}\)

Xét ΔAMB có 

E\(\in\)AM(Gt)

F\(\in\)BM(gt)

\(\dfrac{BF}{FM}=\dfrac{AE}{EM}\)(cmt)

Do đó: EF//AB(Định lí Ta lét đảo)

Thu Thao
30 tháng 1 2021 lúc 21:14

a/ Có AB // DM

=> t/g ABE đồng dạng t/g MDE (đ/l)

=> AE/ME = AB/MD = AB/MC (1)

Có AB // CM

=> t/g ABF đồng dạng t/g CMF (đ/l)

=> AF/MF = AB/CM (2)(1) ; (2)

=> AE/ME = AF/MF

Xét t/g AMB có AE/ME=AF/MF

=> EF // BC (Thales đảo)

b/ Xét t/g DEM có AB // DM

=> ME/AM = DM/AB (Hệ quả đ.l Thales)

Xét t/g AMB có EF // AB

=> ME/AM = EF/AB (Hệ quả Thales)

Do đó EF = DM = 1/2DC = 6 (cm)P/s: câu b không chắc lắm.

Nahida
21 tháng 3 lúc 21:13

24

 

THÔNG BÁO

XEM TẤT CẢ

 

Hãy tham gia nhóm Học sinh Hoc24OLM

Nahida ơi bạn nhập bài muốn hỏi vào đây

 

 

Thu Anh

Thu Anh

27 tháng 1 2021 lúc 19:27

Bài 3:Cho hình thang ABCD(AB//CD) có AB = 15 cm, CD = 20 cm . Gọi M là trung điểm của CD , E là giao điểm của AM và BD . a) Chứng minh EM = 2/3 EA . b) Gọi F là giao điểm của AC và BM.Tính EF c) chứng minh AF.AM.MC = AB.AC.ME Mn giúp mk vs ạ :((

Lớp 8

Toán

NHỮNG CÂU HỎI LIÊN QUAN

Ngân Lê Bảo

Ngân Lê Bảo

30 tháng 1 2021 lúc 21:00

Cho hình thang ABCD, AB song song với CD có AB=7,5 cm, CD=12 cm. Gọi M là trung điểm của CD, E là giao điểm AM và BD, F là giao điểm BM và AC. Chứng minh rằng:

 

a, EF song song với AB

 

b, Tính EF

 

Xem chi tiết

 Theo dõi

 Báo cáo

 

Lớp 8

Toán

2

0

Viết câu trả lời giúp Ngân Lê Bảo

Nahida

 

Nguyễn Lê Phước Thịnh

Nguyễn Lê Phước Thịnh CTV

 

30 tháng 1 2021 lúc 21:14

 

a) Ta có: AB//CD(AB và CD là hai đáy của hình thang ABCD)

 

nên AB//MC

 

Xét ΔAFB và ΔCFM có 

 

ˆ

F

A

B

=

ˆ

F

C

M

(hai góc so le trong, AB//MC)

 

ˆ

A

F

B

=

ˆ

C

F

M

(hai góc đối đỉnh)

 

Do đó: ΔAFB

ΔCFM(g-g)

 

nên 

F

A

F

C

=

F

B

F

M

=

A

B

C

M

 

mà CM=DM(M là trung điểm của CD)

 

nên 

B

F

F

M

=

A

B

D

M

(1)

 

Ta có: AB//CD(Hai cạnh đáy của hình thang ABCD)

 

nên AB//DM

 

Xét ΔABE và ΔMDE có 

 

ˆ

A

B

E

=

ˆ

M

D

E

(hai góc so le trong, AB//DM)

 

ˆ

A

E

B

=

ˆ

M

E

D

(hai góc đối đỉnh)

 

Do đó: ΔABE

ΔMDE(g-g)

 

nên 

A

B

D

M

=

A

E

E

M

(2)

 

Từ (1) và (2) suy ra 

B

F

F

M

=

A

E

E

M

 

Xét ΔAMB có 

 

E

AM(Gt)

 

F

BM(gt)

 

B

F

F

M

=

A

E

E

M

(cmt)

 

Do đó: EF//AB(Định lí Ta lét đ

Linh Phan Bảo
Xem chi tiết
Nguyễn Thị Hương
Xem chi tiết
nguyenvankhoi196a
5 tháng 11 2017 lúc 20:53

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy nah ^_^

Lê Huy Hoang
Xem chi tiết
Trần Thảo Ly
Xem chi tiết
hoang duong sang
Xem chi tiết
GV
10 tháng 9 2018 lúc 16:14

A B C D H K G E F I O

1) Tam giác vuông ABH = tam giác vuông BAK (Góc vuông A = góc vuông B, cạnh AB chung, góc \(\widehat{KAB}=\widehat{HBA}\))

=> AH = BK

Mà AH // BK cì cùng vuông góc với AB => ABKH là hình bình hành, lại có 2 góc vuông nên nó là hình chữ nhật

b) Gọi O là trung điểm của HK. Ta có E, I , O thẳng hàng do ABKH là hình chữ nhật (các bạn tự chứng minh)

HK // AB // DC => E, O, F thẳng hàng 

HKDC là hình thang cân => O, G, F cũng thẳng hàng

=> E, I, O, G, F thảng hàng

super xity
Xem chi tiết
Phước Nguyễn
7 tháng 3 2016 lúc 21:19

G A B M O N N' C D E F

Gọi  \(N\)  là trung điểm của đoạn thắng  \(AB\)  \(;\)  \(N'\)  là giao điểm của \(GM\)  và \(AB\)

Tứ giác  \(ABCD\)  là hình thang nên  \(AB\text{//}CD\)

Khi đó, 

\(\Delta GMD\)  có  \(AN'\text{//}MD\), nên \(\frac{AN'}{MD}=\frac{GN'}{GM}\) (hệ quả của định lý Ta-lét) \(\left(3\right)\)

\(\Delta GMC\)  có  \(N'B\text{//}MC\), nên \(\frac{N'B}{MC}=\frac{GN'}{GM}\)  \(\left(4\right)\)

\(\left(3\right);\)  \(\left(4\right)\)  \(\Rightarrow\)  \(\frac{AN'}{MD}=\frac{N'B}{MC}\)  \(\left(=\frac{GN'}{GM}\right)\)

Mà  \(MD=MC\)  \(\left(gt\right)\), do đó, \(AN'=N'B\)  hay  \(N'\)  phải trùng với  \(N\)

Tức là ba điểm \(G,\)  \(N,\)  \(M\)  thẳng hàng  \(\left(\text{*}\right)\)  

Tương tự, ta cũng chứng minh được ba điểm   \(N,\)  \(O,\)  \(M\)  thẳng hàng  \(\left(\text{**}\right)\)  

Từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\)  suy ra bốn điểm   \(G,\)  \(N,\)  \(O,\)  \(M\)  thẳng hàng

Vậy, đoạn thẳng \(GO\)  sẽ lần lượt đi qua  \(N\)  và  \(M\)  hay đi qua trung điểm của  \(AB\)  và  \(CD\)

Thắng Nguyễn
6 tháng 3 2016 lúc 21:34

Đặt AB = m, MC = MD = n.

a) Do AB // CD, ta có :

\(\frac{MI}{TA}=\frac{MD}{AB}=\frac{n}{m}\)

\(\frac{MK}{KB}=\frac{MC}{AB}=\frac{n}{m}\)

Từ (1) và (2) suy ra \(\frac{MI}{IA}=\frac{MK}{KB}\) Từ đó theo định lí đảo của định lí Ta - lét đối với tam giác MAB, ta có IK // AB. ( nhưng lớp 8 chưa học ta -lét thì fai )

Phước Nguyễn
6 tháng 3 2016 lúc 22:09

A B C D M E F