giải phương trình x-2/2016 +x-4/1009+x-6/2020=-4
giải phương trình \(\frac{x-2}{2016}+\frac{x-4}{1009}+\frac{x-6}{2020}=-4\)
\(\dfrac{x-2}{2016}+\dfrac{x-4}{1009}+\dfrac{x-6}{2020}=-4\)
<=>\(\dfrac{x-2}{2016}+1+\dfrac{x-4}{1009}+2+\dfrac{x-6}{2020}+1=0\)
<=>\(\dfrac{x+2014}{2016}+\dfrac{x+2014}{1009}+\dfrac{x+2014}{2020}=0\)
<=>\(\left(x+2014\right)\left(\dfrac{1}{2016}+\dfrac{1}{1009}+\dfrac{1}{2020}\right)=0\)
vì 1/2016+1/1009+1/2020 khác 0
=>x+2014=0<=>x=-2014
GIẢI PHƯƠNG TRÌNH : (x+1/2022 ) + (x+3/2020) + (x+5/2018) + (x+7/2016) = -4
\(\Leftrightarrow\left(\dfrac{x+1}{2022}+1\right)+\left(\dfrac{x+3}{2020}+1\right)+\left(\dfrac{x+5}{2018}+1\right)+\left(\dfrac{x+7}{2016}+1\right)=0\)
=>x+2023=0
=>x=-2023
giải các phương trình:
\(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5x-2}{4-x^2}\)
\(\dfrac{x+2}{2020}+\dfrac{x+4}{2018}=\dfrac{x+6}{2016}+\dfrac{x+8}{2014}\)
Giúp tớ với, thầy réo tớ kinh lắm rồi!
\(\dfrac{1}{x+1}\)-\(\dfrac{5}{x-2}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\)\(\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}\)-\(\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\)x-2-5(x+1)=15
\(\Leftrightarrow\) x-2-5x-5=15
\(\Leftrightarrow\)x-5x=15+2+5
\(\Leftrightarrow\)-4x=22
\(\Leftrightarrow\)x=-\(\dfrac{11}{2}\)
vậy
Giải phương trình: \(P=\dfrac{x-1009}{1001}+\dfrac{x-4}{1003}+\dfrac{x+2010}{1005}=7\)
ta có :
\(\frac{x-1009}{1001}-1+\frac{x-4}{1003}-2+\frac{x+2010}{1005}-4=0\)
hay \(\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\Leftrightarrow x-2010=0\)
hay x =2010
Vậy phương trình có nghiệm x = 2010
Giải phương trình
x-27/1991 + x-60/1958 + x/1009 = 4
\(\frac{x-27}{1991}+\frac{x-60}{1958}+\frac{x}{1009}=4\)
<=> \(\frac{x-27}{1991}-1+\frac{x-60}{1958}-1+\frac{x}{1009}-2=0\)
<=> \(\frac{x-2018}{1991}+\frac{x-2018}{1958}+\frac{x-2018}{1009}=0\)
<=> x - 2018 = 0
<=> x = 2018
Vậy:...
Giải phương trình:
x+1/2018 + x+2/2017 + x+3/2016 + x+4/2015 + x+2043/6 =0
Giải phương trình nghiệm nguyên
a) \(x^2+6x+17^{91}=2016^{2020}\)
b) \(x^2+2017^{2019}=2016\left(y-1\right)^2\)
c) \(x^2-2x=2017^{2017}\)
d) \(x^2+4x=2018^{10}\)
Lời giải:
a.
PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$
Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$
Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.
b.
$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.
Vậy pt vô nghiệm.
c.
$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm
d.
$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$
Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm.
giải phương trình sau (x-2) / 2012 + (x-4) / 2014 + (x-6) / 2016 = (x-1) / 2011+ (x-3 ) /2013+ (x-5) /2015
Giải phương trình .x-2/2017+x-3/2018=x-4/2019+x-5/2020
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
<=> \(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
<=> \(\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
<=> \(\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
<=> x + 2015 = 0 ( vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x = - 2015
Vậy x = -2015.
Giải phương trình :
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
\(\Rightarrow\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)>0\)
\(\Rightarrow x+2015=0\)
\(\Rightarrow x=-2015\)
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
\(\Rightarrow\left(\frac{x-2}{2017}+1\right)+\left(\frac{x-3}{2018}+1\right)=\left(\frac{x-4}{2019}+1\right)+\left(\frac{x-5}{2020}+1\right)\)
\(\Rightarrow\frac{x-2+2017}{2017}+\frac{x-3+2018}{2018}=\frac{x-4+2019}{2019}+\frac{x-5+2020}{2020}\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}=\frac{x+2015}{2019}+\frac{x+2015}{2020}\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+15\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
\(\Rightarrow x+2015=0\)
\(\Rightarrow x=-2015\)
Vậy x = - 2015