Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trâm Anh
Xem chi tiết
GV
9 tháng 3 2018 lúc 14:09

Điều kiện để có pt bậc hai có 2 nghiệm phân biệt cùng dấu là:

\(\hept{\begin{cases}\Delta'>0\\x_1.x_2=\frac{c}{a}>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}k^2-4k+5>0\\4k-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(k-2\right)^2+1>0\\k>\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow k>\frac{5}{4}\)

Trâm Anh
9 tháng 3 2018 lúc 14:35

cảm ơn bạn nha

Nguyễn Tiến Thịnh
29 tháng 3 2019 lúc 20:13

không biết

Trâm Anh
Xem chi tiết
GV
9 tháng 3 2018 lúc 14:52

Điều kiện để phương trình bậc hai có hai nghiệm trái dấu là \(\frac{c}{a}< 0\) (vì khi này thì \(a.c< 0\) và \(\Delta=b^2-4ac>0\))

=> \(k^2-16>0\)

    \(k< -4\) hoặc \(k>4\)

lê thị thu hà
Xem chi tiết
Thu vân
Xem chi tiết
Đinh Phi Yến
2 tháng 12 2021 lúc 16:58

Pt: x2+4x+m+1 (1)

Ta có △'= 22-1.(m+1)=3-m

a)  Pt (1) vô nghiệm ⇔△'<0⇔3-m<0⇔m>3

b)  (1) có nghiệm kép ⇔△'=0 ⇔ m=3

c)  (1)  có nghiệm ⇔ △' ≥ 0 ⇔ m ≤3

d)  (1)  có 2 nghiệm phân biệt ⇔ △' >0 ⇔m<3

e)   (1) có 2 nghiệm trái dấu ⇔ 1.(m+1)< 0⇔m<-1

f)    (1) có 2 nghiệm dương phân biệt ⇔ △'>0 , x1+x2 = -b/a>0, x1.x2=c/a>0

⇔m<3,  -4>0, m+1>0

⇒ vô nghiệm 

   

                                                           

                                                        

Phương Lý 21 Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2023 lúc 23:48

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

Huỳnh Trần Thảo Nguyên
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Linh Bùi
Xem chi tiết
Akai Haruma
5 tháng 3 2021 lúc 21:48

Lời giải:

Xin chỉnh sửa lại chút, tìm $k$, chứ không phải tìm $m$.

PT $\Leftrightarrow x^2-(6k-2)=0\Leftrightarrow x^2=6k-2$

Để pt có 2 nghiệm phân biệt thì $6k-2>0\Leftrightarrow k>\frac{1}{3}$

Khi đó:

$x_1=\sqrt{6k-2}$ và $x_2=-\sqrt{6k-2}$

Để $3x_1-x_2=2$

$\Leftrightarrow 3\sqrt{6k-2}+\sqrt{6k-2}=2$

$\Leftrightarrow \sqrt{6k-2}=\frac{1}{2}\Rightarrow k=\frac{3}{8}$

Đinh Hải Anh
Xem chi tiết
Dương Thị Ngọc Anh
30 tháng 4 2017 lúc 17:57

mình làm luôn 4 nghiệm nhé-đổi k thành m cho dễ nhé

Pt trở thành: t² + 2mt + 4 = 0 (*). 
Pt đã cho có 4 nghiệm phân biệt <=> pt (*) có 2 nghiệm phân biệt dương. => xảy ra đồng thời: delta’(t) > 0; S = x1 + x2 > 0; p = x1x2 > 0 <=> m² - 4 > 0; -2m > 0; 4 > 0 ( theo Vi-et) 
=> m < -2. 
=> pt đã cho có nghiệm x1,2 = +- căn t1; x3,4 = +- căn t2 
=> x1^4 = x2^4 = t1²; x3^4 = x4^4 = t2² 
=> x1^4 + x2^4 + x3^4 + x4^4 = 2(t1² + t2²) = 32 => t1² + t2² = 16. 
<=> (t1 + t2)² - 2t1t2 = 16 <=> (-2m)² - 2.4 = 16 <=> 4m² - 4 = 16 
<=> m² = 6, mà m < -2 => m = -(căn 6). 
vậy với m = -(căn 6) thì pt đã cho có 4 nghiệm phân biệt x1 ,x2, x3, x4 thỏa mãn x1^4 + x2^4 + x3^4 + x4^4 = 32. 

Dương Thị Ngọc Anh
30 tháng 4 2017 lúc 17:58

mik lm 4 nghiệm nhé-đổi k thành m nữa

Pt trở thành: t² + 2mt + 4 = 0 (*). 
Pt đã cho có 4 nghiệm phân biệt <=> pt (*) có 2 nghiệm phân biệt dương. => xảy ra đồng thời: delta’(t) > 0; S = x1 + x2 > 0; p = x1x2 > 0 <=> m² - 4 > 0; -2m > 0; 4 > 0 ( theo Vi-et) 
=> m < -2. 
=> pt đã cho có nghiệm x1,2 = +- căn t1; x3,4 = +- căn t2 
=> x1^4 = x2^4 = t1²; x3^4 = x4^4 = t2² 
=> x1^4 + x2^4 + x3^4 + x4^4 = 2(t1² + t2²) = 32 => t1² + t2² = 16. 
<=> (t1 + t2)² - 2t1t2 = 16 <=> (-2m)² - 2.4 = 16 <=> 4m² - 4 = 16 
<=> m² = 6, mà m < -2 => m = -(căn 6). 
vậy với m = -(căn 6) thì pt đã cho có 4 nghiệm phân biệt x1 ,x2, x3, x4 thỏa mãn x1^4 + x2^4 + x3^4 + x4^4 = 32.