Cho A= \(n^3+2n^2-3n+2\)
B= \(n^2-n\)
Tìm \(n\in Z\text{ để }A\text{ }⋮\text{ }B\)
1. CMR: ∀ n∈\(N^{\cdot}\)
a) \(A=5^n+2.3^{n-1}+1\text{⋮}8\)
b) \(B=3^{n+2}+4^{2n+1}\text{⋮}13\)
c) \(C=6^{2n}+3^{n+2}+3^n\text{⋮}11\)
d) \(D=1^n+2^n+5^n+8^n\text{⋮}8\)
2. \(CMR:\) \(1^{2002}+2^{2002}+...+2002^{2002}\text{⋮}11\)
3. a) cho a,b ∈Z, t/m:\(a^2+b^2\text{⋮}7\). \(CMR:a\text{⋮}7;b\text{⋮}7\)
b) \(CMR:\) Nếu \(a^2+b^2\text{⋮}21\) thì \(a^2+b^2\text{⋮}441\) (a,b ∈Z)
\(1,\)
\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)
Với \(n=k+1\)
\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)
Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)
Theo pp quy nạp ta được đpcm
\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)
Với \(n=k+1\)
\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)
Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)
Theo pp quy nạp ta được đpcm
\(1,\)
\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)
Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)
\(d,D=1^n+2^n+5^n+8^n\)
Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)
\(2,\)
Ta thấy:\(1+2+...+2002=\left(2002+1\right)\left(2002-1+1\right):2=2003\cdot2002:2⋮11\left(2002⋮11\right)\)
Do đó \(1^{2002}+2^{2002}+...+2002^{2002}⋮1+2+...+2002⋮11\)
tìm số chính phương A với A= abc+bca+cab
tìm n thuộc N biết:
a) n2+2n+4 chia het cho n+1
b) 2n2+10n+20 chia hết cho 2n+3
c) 3n+ 7 chia hết cho 4-n
1. Tìm n thuộc Z để:
a) n+6 chia hết cho n+4
b) 2n+3 chia hết cho n-2
c) 3n+1 chia hết cho 11-2n
d) n2+8 chia hết cho n-7
2. Tìm x, y sao cho:
a) (x+1)y-5=4
b) xy-x+y=0
Các bạn giúp mình nhé mình fải đihọc. Cảm ơn nhìu nhìu
Bài 1 : Cho A = 1 - 4 + 7 - 10 + ......
Tìm n biết A = 2020
Bài 2 : Tìm n thuộc Z biết : 2n + 1 chia hết cho 16 - 3n
Bài 3 : Tìm các số tự nhiên a,b,c biết 2a + 2b + 2c = 10368
Bài 4 : Tìm các chữ số a, b, c
a. abc + ab + a = 1037
b. ab + bc + ca = abc
Bài 1 là có n số hạng các bạn nhé
mình quên mất
Cho A = 3n + 2
2n + 1
Tìm n thuộc Z để A thuộc Z
\(T\text{ìm}n\in Nbi\text{ế}t:\)
\(a)n^2+n+1⋮n+1\)
\(b)n^2+2n+6⋮n+8\)
\(c)n^2+3n+8⋮n-2\)
\(d)n^2+3n+8⋮n+2\)
a.Ta có: n2 +n + 1
=n.(n+1) +1
Vì n+1 chia hết cho n+1 => n.(n+1) chia hết cho n+1
Để n.(n+1)+1 chia hết cho n+1 => 1 chia hết cho n+1.
=> n+1 thuộc Ư(1)
Mà n thuộc N => n=1
Vậy n=1.
a) Ta có : \(n^2+n+1=n\left(n+1\right)+1\)
\(\Rightarrow n^2+n+1⋮n+1\Leftrightarrow1⋮n+1\) ( vì \(n\left(n+1\right)⋮n+1\))
\(\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\) ( vì \(n\inℕ\))
\(\Rightarrow n=1-1=0\)
Vậy \(n=0\)
Làm tương tự với các câu còn lại.
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
a) Tìm chữ số a; b để số A= 43a5b chia 9; 4 đều dư 2.
b) Chứng minh rằng nếu( 4a+ 9b)\(⋮\) 11 thì( 3a+ 4b)\(⋮\) 11( với a; b\(\in\) N).
c) Tìm n\(\in\) N sao cho:
1. 10n+ 2\(⋮\) 2n- 1.
2. 2n+ 3\(⋮\) n- 2.
3. 3n+ 1\(⋮\) 11- 2n.
c) 1. 10n+2 \(⋮\)2n-1
=> 5(2n-1) +7 \(⋮\)2n-1 => 7\(⋮\)2n-1
2. 2n+3\(⋮\)n-2
=> 2(n-2) +7\(⋮\)n-2 => 7\(⋮\)n-2
3. 3n+1 \(⋮\)11-2n
=> 6n+2 \(⋮\)2n-11
=> 3(2n-11) +35\(⋮\)2n-11
=> 35\(⋮\)2n-11
a) vì chia 4 dư 2 nên \(\overline{5b}\)chia 4 dư 2 => b là 0 ; 4 ; 8
nếu b =0 thì 4+3+a+5+0 = 12 +a chia 9 dư 2 => a=8
nếu b =4 thì 4+3+a+5+4 = 16 +a chia 9 dư 2 => a=4
nếu b = 8 thì 4+3+a+5+8 = 20+a chia 9 dư 2 => a = 0 hoặc a=9
cũng 3 năm r chưa lm nên k biết có đúng k
b) 4a + 9b\(⋮\)11
=> 8a + 18 b\(⋮\)11
mà 11a +22b \(⋮\)11
=> 3a + 4b \(⋮\)11
1.Tìm x,y ∈ Z
\(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
2.Tìm p nguyên tố để
\(2^p+3^p=x^2\)(x∈\(Z^+\))
3.CMR:
a) ∀n∈N thì \(A=n^3-n+7\) không chia hết cho 6
b) ∀n∈N; n lẻ thì \(B=n^3-n\text{⋮}24\)
c) \(C=n^4+6n^3+11n^2+6n\text{⋮}24\) (n∈\(N^{\cdot}\))
1. Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học trực tuyến OLM
3.
\(a,A=n^3-n+7=n\left(n-1\right)\left(n+1\right)+7\)
Có \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số tự nhiên lt với \(n\in N\) nên chia hết cho 6
Mà 7 ko chia hết cho 6 nên A không chia hết cho 6
\(b,B=n^3-n=n\left(n-1\right)\left(n+1\right)\)
Như câu a thì B chia hết cho 6 hay B chia hết cho 3
Ta thấy n lẻ nên \(n=2k+1\left(k\in N\right)\)
\(\Rightarrow B=n^3-n=\left(n-1\right)n\left(n+1\right)\\ =\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)\\ =2k\left(2k+1\right)\left(2k+2\right)\\ =4k\left(k+1\right)\left(2k+1\right)\)
Mà k+1 và 2k+1 là 2 số tự nhiên lt nên chia hết cho 2
\(\Rightarrow B⋮4\cdot2\left(2k+1\right)=8\left(2k+1\right)⋮8\)
Vì B chia hết cho cả 3;8 và \(\left(3;8\right)=1\) nên B chia hết 24
\(c,C=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Ta thấy đây là 4 số tự nhiên lt với \(n\in N\) nên chia hết cho 24