* Cho góc nhọn a. Biết cosa-sina=\(\dfrac{1}{5}\). Tính cota
cho góc nhọn a . tính B = sina + cosa biết tana + cota = 3
Bài 6. Cho góc nhọn a. Biết cosa - sina = \(\dfrac{1}{5}\). Tính cot a
Ta có: \(sin^2\alpha+cos^2\alpha=1\Rightarrow sin^2\alpha+\left(sin\alpha+\dfrac{1}{5}\right)^2=1\)
\(\Rightarrow25sin^2\alpha+5sin\alpha-12=0\\\Rightarrow\left(5sin\alpha-3\right)\left(5sin\alpha+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}sin\alpha=\dfrac{3}{5}\Rightarrow cos\alpha=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\Rightarrow cot\alpha=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\\sin\alpha=-\dfrac{4}{5}\left(loại\right)\end{matrix}\right. \)
Mn giải giúp em với ạ :
Có góc nhọn a ,Cosa - sina = 1/5 . Tính cota
xét cos a - sin a = 1/5
=> (cos a - sin a)^2 = 1/25
<=> (cos a)^2 + (sin a)^2 - 2cosasina = 1/25
xét (cos a)^2 + (sin a)^2 =1 => -2(cos a)(sin a) = 1/25 - 1 = -24/25
=> (cos a)(sin a) = 12/25
=> cos a = 12/(25.sin a)
sau đó thay vào pt ban đầu cos a - sin a = 1/5
<=> - (sin a)^2 -1/5sina + 12/25 =0
Giải pt bậc 2 dc 2 nghiệm 1 am 1 dương thì bạn lấy nghiệm dương do a là góc nhọn
cho bt 1 tỉ số góc nhọn anfa tính các tỉ số còn lại
a ) sina=0,8
b) cosa=0,6
c) tana=3
d)cota=2
Bài 1: Cho tam giác MNP vuông tại N, biết rằng MP=10dm,MN=6cm.Tính tỉ số lượng giác của hai góc nhọn M và P Bài 2: Cho sinA=0,35.Tính tanA , cotA , cosA ?
Bài 2:
\(\cos\widehat{A}=\dfrac{3\sqrt{39}}{20}\)
\(\tan\widehat{A}=\dfrac{7}{20}:\dfrac{3\sqrt{39}}{20}=\dfrac{7}{3\sqrt{39}}=\dfrac{7\sqrt{39}}{117}\)
\(\cot\widehat{A}=\dfrac{3\sqrt{39}}{7}\)
Biết Cosa=3/4 tính sina cota tana
Tan a=12/35 tính sina cota cosa
tana = 3/4.
=>cota=1/ tana =1:3/4=4/3
sina /cosa =tana
=> sina =tana .cosa =3/4. cosa
lại có sin^2(a)+cos^2(a)=1
<=>9/16cos^2(a)+cos^2=1
<=>25/16cos^2(a)=1
<=>cos^2(a)=16/25
=>[cosa =4/5=>sina =3/5
[cosa =-4/5=> sina =-2/5
chứng minh \(\dfrac{sin^2a}{cosa\left(1+tana\right)}-\dfrac{cos^2a}{sina\left(1+cota\right)}-sina-cota\)
Sử dụng định nghĩa tỉ số lượng giác của 1 góc nhọn để chứng minh rằng với góc nhọn a tùy ý ta có:
tan a=\(\dfrac{sina}{cosa}\) cot a=\(\dfrac{cosa}{sina}\) tan a . cot a =1 sin2a + cos2a= 1
Cho tam giác ABC vuông tại C có sinA=3/5 .không tính số đo góc A.Hãy tính cosA,tanA,cotA
\(\sin^2\widehat{A}+\cos^2\widehat{A}=1\Leftrightarrow\cos^2\widehat{A}=1-\left(\dfrac{3}{5}\right)^2=1-\dfrac{9}{25}=\dfrac{16}{25}\\ \Leftrightarrow\cos\widehat{A}=\dfrac{4}{5}\\ \tan\widehat{A}=\dfrac{\sin\widehat{A}}{\cos\widehat{A}}=\dfrac{3}{4}\\ \Rightarrow\cot\widehat{A}=\dfrac{1}{\tan\widehat{A}}=\dfrac{4}{3}\)