Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tú Anh
Xem chi tiết
Pose Black
Xem chi tiết
Gia Huy
28 tháng 6 2023 lúc 14:48

Ta có: \(sin^2\alpha+cos^2\alpha=1\Rightarrow sin^2\alpha+\left(sin\alpha+\dfrac{1}{5}\right)^2=1\)

\(\Rightarrow25sin^2\alpha+5sin\alpha-12=0\\\Rightarrow\left(5sin\alpha-3\right)\left(5sin\alpha+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}sin\alpha=\dfrac{3}{5}\Rightarrow cos\alpha=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\Rightarrow cot\alpha=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\\sin\alpha=-\dfrac{4}{5}\left(loại\right)\end{matrix}\right. \)

Nguyễn Hoàng Nam
Xem chi tiết
Le Nhat Phuong
31 tháng 8 2017 lúc 21:45

xét cos a - sin a = 1/5 
=> (cos a - sin a)^2 = 1/25 
<=> (cos a)^2 + (sin a)^2 - 2cosasina = 1/25 
xét (cos a)^2 + (sin a)^2 =1 => -2(cos a)(sin a) = 1/25 - 1 = -24/25 
=> (cos a)(sin a) = 12/25 
=> cos a = 12/(25.sin a) 
sau đó thay vào pt ban đầu cos a - sin a = 1/5 
<=> - (sin a)^2 -1/5sina + 12/25 =0 
Giải pt bậc 2 dc 2 nghiệm 1 am 1 dương thì bạn lấy nghiệm dương do a là góc nhọn

Nguyên Phan
Xem chi tiết
Uyên Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2021 lúc 22:33

Bài 2: 

\(\cos\widehat{A}=\dfrac{3\sqrt{39}}{20}\)

\(\tan\widehat{A}=\dfrac{7}{20}:\dfrac{3\sqrt{39}}{20}=\dfrac{7}{3\sqrt{39}}=\dfrac{7\sqrt{39}}{117}\)

\(\cot\widehat{A}=\dfrac{3\sqrt{39}}{7}\)

Nguyễn Bá Thông
Xem chi tiết
Athanasia Karrywang
24 tháng 8 2021 lúc 15:43

tana = 3/4.
=>cota=1/ tana =1:3/4=4/3
sina /cosa =tana
=> sina =tana .cosa =3/4. cosa
lại có sin^2(a)+cos^2(a)=1
<=>9/16cos^2(a)+cos^2=1
<=>25/16cos^2(a)=1
<=>cos^2(a)=16/25
=>[cosa =4/5=>sina =3/5
    [cosa =-4/5=> sina =-2/5

Khách vãng lai đã xóa
tamanh nguyen
Xem chi tiết
Ng Trâm
Xem chi tiết
Anh Quynh
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 11:22

\(\sin^2\widehat{A}+\cos^2\widehat{A}=1\Leftrightarrow\cos^2\widehat{A}=1-\left(\dfrac{3}{5}\right)^2=1-\dfrac{9}{25}=\dfrac{16}{25}\\ \Leftrightarrow\cos\widehat{A}=\dfrac{4}{5}\\ \tan\widehat{A}=\dfrac{\sin\widehat{A}}{\cos\widehat{A}}=\dfrac{3}{4}\\ \Rightarrow\cot\widehat{A}=\dfrac{1}{\tan\widehat{A}}=\dfrac{4}{3}\)