Rút gọn A = 165.\(\left(4^{2017}+4^{2016}+4^{2015}+...+4^2+5\right)+55\)
Cho \(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right);B=\frac{1}{\left(x+y\right)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}\right);C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)\)
a) Rút gọn tổng A+B+C
b) Tính tổng A+B+C tại x=2016;y=2017
Ta có:
\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)
\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)
\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)
\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)
\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)
b/ Thế vô rồi tính nhé
Đoạn gần cuối thay y-x= 1 luôn
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)
\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)
\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\) giờ mới thay không biết đã tối giản chưa
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
C = \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)= \(\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(=\frac{3}{5}+\frac{2}{5}=1\)
b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{1}{3.2}-\frac{5.2}{7.3}\)
\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)
\(=\frac{7}{42}-\frac{20}{42}\)
\(=-\frac{13}{42}\)
cs ng làm đung r
đag định lm
\(\frac{\left(2.4.6.....2016\right).\left(2.4.6.....2016\right)}{\left(1.3.5.....2015\right).\left(3.5.7.....2017\right)}\) rút gọn bằng gì vậy?
1, Rút gọn
a, 8^26+4^20/4^25+64^5
b, 2^2017-(2^2016+2^2015+2^2014+...+2+1)
c, Tìm x : x^10=25:x^8
d, cho hình vẽ:
Rút gọn:
\(\frac{2016-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{2017}}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{2015}{2016}}\)
\(\frac{\left(2.4.6.....2016\right).\left(2.4.6.....2016\right)}{\left(1.3.5.....2015\right).\left(3.5.7.....2017\right)}\) rút gọn bằng gì vậy?
1 chứng minh
\(\left(17^5+24^4-13^{21}\right)⋮10\)
2 rút gon
\(M=2^{2017}-2^{2016}-2^{2015}-.......-2^0\)
a) C/m: \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow a=b=c\)
b) C/m: \(T=x\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\ge0\) \(\forall x,a\in R\)
c) Tìm x sao cho: \(\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}+\frac{x+2}{2018}=\frac{x+2015}{5}+\frac{x+2016}{4}+\frac{x+2017}{3}+\frac{x+2018}{2}\)
a) \(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)
Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(c-a\right)^2\ge0\\\left(b-c\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)
\(\Leftrightarrow a=b=c\)
a. \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ab-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
c) \(\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}+\frac{x+2}{2018}=\frac{x+2015}{5}+\frac{x+2016}{4}+\frac{x+2017}{3}+\frac{x+2018}{2}\)
Ta có VT + 4 = VP + 4
VT + 4 = \(\left(\frac{x+5}{2015}+1\right)+\left(\frac{x+4}{2016}+1\right)+\left(\frac{x+3}{2017}+1\right)+\left(\frac{x+2}{2018}+1\right)\)
\(=\frac{x+2020}{2015}+\frac{x+2020}{2016}+\frac{x+2020}{2017}+\frac{x+2020}{2018}\)
\(=\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)\)
VP + 4 = \(\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)+\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}\right)\)
\(=\frac{x+2020}{5}+\frac{x+2020}{4}+\frac{x+2020}{3}+\frac{x+2020}{2}\)
\(=\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\right)\)
Khi đó \(\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\right)\)
=> \(\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
Vì \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\ne0\)
=> x + 2020 = 0
=> x = -2020
1) Tìm giá trị lớn nhất nhỏ nhất của hàm số: \(f\left(x\right)=x+\frac{4}{x}\)với \(1\le x\le3\)
2) Rút gọn \(A=\sqrt{\frac{2015x+2016}{2016x-2015}}+\sqrt{\frac{2015x+2016}{2015-2016x}}+2017\)