1 tìm 3 chữ số tận cùng của 3 ^100
2 giải pt : x^2+y^2+z^2=x(y+z)
$1)$ Giải hệ: $\begin{cases} 3x-2\sqrt{y}=1\\ 3y-2\sqrt{z}=1\\ 3z-2\sqrt{x}=1 \end{cases}$
$2)$ Cho $A=\left(\sqrt{3}+\sqrt{2}\right)^{30}+\left(\sqrt{3}-\sqrt{2}\right)^{30}$, tìm chữ số tận cùng của $\left[A\right]$ biết $\left[u\right]$ là số nguyên lớn nhất không vượt quá $u$
Bài 1: Cho S=2+22+...+2100
a.Chứng tỏ răng S chia hiết cho 15
b.Tìm chữ số tận cùng của S
c.Tính tổng S
Bài 2:Tìm số tự nhiên nhỏ nhất mà:
a.Số đó chia 5 dư 3, chia 7 dư 4.
b.Số đó chia 11 dư 6, chia 4 dư 1 và chia 19 dư 11.
Bài 3: Tính :1+3-5-7+9+11-...-397-399.
Bài 4: Tìm x,y,z thuộc Z biết x-y= 2011, y-z= -2012, z+x=2013
Giải chi tiết nhé
Bài 1 : Tìm số dư của các phép chia :
a) 2^1 + 3^5 + 4^9 + … + 2003^8005 cho 5
b) 2^3 + 3^7 + 4^11 + … + 2003^8007 cho 5
Bài 2 : Tìm chữ số tận cùng của X, Y :
X = 2^2 + 3^6 + 4^10 + … + 2004^8010
Y = 2^8 + 3^12 + 4^16 + … + 2004^8016
Bài 3 : Chứng minh rằng chữ số tận cùng của hai tổng sau giống nhau :
U = 2^1 + 3^5 + 4^9 + … + 2005^8013
V = 2^3 + 3^7 + 4^11 + … + 2005^8015
Bài 4 : Chứng minh rằng không tồn tại các số tự nhiên x, y, z thỏa mãn : 19x + 5y + 1980z = 1975430 + 2004.
Bài 5 : Có tồn tại số tự nhiên n hay không để n^2 + n + 2 chia hết cho 5.
- Giải giúp mk với nha ! Mk tick cho.
- Đề bài bài 4 nhầm nha.
- Phải là : 19^x + 5^y + 1980z = 1975^430 + 2004
Giải hệ PT \(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz +zx) = 1
⇔ xy + yz + zx = 0
(x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x) = 1
⇔ Trong 3 số x, y, z có hai số đối nhau. Giả sử hai số đó là x, y
⇔ xy + z(x + y)=0
⇔ x = y = 0; z = 1
Vậy (x;y;z)=(0;0;1) và các hoán vị.
1 )tìm x,y,z bt
a)x/y=17/3 và x+y =60
b)x/19=y/21 và 2x-y=34
c) x^2/9=y^2/16 và x^2+y^2 =100
d)x=y/2 z/3 và 4x-3y +2z=36
e)x/3=y/4 ;y/3=z/5 và 2x-3y+2=6
g)3x=2y ;7y=5z và x-y+z=32
2) tìm các cạnh của một hình chữ nhật biết tie số giữa 2 cạn là 2/3 và chu vi của hình chữ nhật là 60 m
Ta co:
\(\frac{x}{y}=\frac{17}{3}\Rightarrow\frac{x}{3}=\frac{y}{17}=\frac{x+y}{3+17}=3\)
\(\frac{x}{3}=3\Rightarrow x=9\)
\(\frac{y}{17}=3\Rightarrow y=51\)
b)Ta co:
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=2\)
\(\frac{2x}{38}=2\Rightarrow x=38\)
\(\frac{y}{21}=2\Rightarrow y=42\)
Ta co:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=4\)
\(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=8\)
g)\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=2\)
\(\frac{x}{10}=2\Rightarrow x=20;\frac{y}{15}=2\Rightarrow y=30;\frac{z}{21}=2\Rightarrow z=42\)
Cho ba số x;y;z là các số tự nhiên khác 0 sao sho :
x2 + y2 + z2 = 192
Tìm Chữ số tận cùng của 19x + 5y + 19932z.
Giải hệ pt: x^3 +y=2,y^3+z =2,z^3+t=2,t^3+x=2
1 cho x,y,z là 3 số dương thõa mãm xyz=1 CM \(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\le1\)
2 Tìm các chữ số a,b sao cho \(\overline{a56b}⋮45\)
3 Tìm ngiệm nguyên của pt \(x^2+2y^2+2xy+3y-4=0\)
3.(x+y)^2+y^2+3y+9/4=25/4
(x+y)^2+(y+3/2)^2=25/4
2
Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)
\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9
\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)
Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)
\(\Rightarrow a=2\)
\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)
\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)
Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)
\(3\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2+3y-4\right)=0\Leftrightarrow4\left(x+y\right)^2+\left(4y^2+12y-4\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(2y+3\right)^2=13\)
...........
Ai giúp mình giải mấy bài toán này vs :
Câu 1: Giải phương trình nghiệm nguyên: x2+y2=3-xy
Câu 2: Giải pt : (x2-5x+6)3 + (1-x2)3 = (7-5x)3
Câu 3: Tìm tất cả số nguyên dương x,y,z thỏa mãn đồng thời các điều kiện :
x+y+z>11 và 8x+9y+10z=100