Cho phương trình (ẩn x):(2m-1) x-25+m =0
a. Tìm gt m để pt là pt bậc nhất
b. Giải pt m=-1
Cho phương trình ẩn x (2m-1)x-25+m=0
a. Tìm giá trị của m để pt là pt bậc nhất
b. Giải phương trình m=-1
a: Để đây là pt bậc nhất thì 2m-1<>0
hay m<>1/2
b: Khi m=-1 thì -3x-25-1=0
=>x=-26/3
Cho phương trình ( Ẩn x ) :(2m-1)x-25+m =0
a) Tìm các giá trị của m để pt là pt bậc nhất
b) Giải phương trình m=-1
a: Để đây là phương trình bậc nhất thì 2m-1<>0
hay m<>1/2
b: Khi m=-1 thì pt sẽ là \(\left(-2-1\right)x-25+\left(-1\right)=0\)
=>-3x-26=0
hay x=-26/3
(2m-8) x+3=0 tìm M=? để Pt là pt bậc nhất 1 ẩn
\(\Leftrightarrow2m-8< >0\)
hay m<>4
1. Giải phương trình: 2x4 - 3x2 - 5 = 0
2. Cho phương trình bậc 2 ẩn x: x2 - (m+5)x-m+6=0 (1) (m là tham số)
a. Giải pt (1) khi m = 1
b. Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa mãn: x12x2 + x1x22 = 18
#help me, hứa sẽ vote.
Bài 1:
$2x^4-3x^2-5=0$
$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$
$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$
$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)
$\Leftrightarrow x^2=\frac{5}{2}$
$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$
Bài 2:
a. Khi $m=1$ thì pt trở thành:
$x^2-6x+5=0$
$\Leftrightarrow (x^2-x)-(5x-5)=0$
$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$
$\Leftrightarrow x=1$ hoặc $x=5$
b.
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$
$\Leftrightarrow m^2+14m+1\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=m+5$
$x_1x_2=-m+6$
Khi đó:
$x_1^2x_2+x_1x_2^2=18$
$\Leftrightarrow x_1x_2(x_1+x_2)=18$
$\Leftrightarrow (m+5)(-m+6)=18$
$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$
$\Leftrightarrow (m+3)(m-4)=0$
$\Leftrightarrow m=-3$ hoặc $m=4$
Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.
Bài 4: Cho PT sau : ( m2 + 1 ) x - 2m = 0 ( m là tham số)
a) CMR : PT là PT bậc nhất 1 ẩn với mọi n
b) Tìm m để nghiện của PT
- Đạt GTLN
- Đạt GTNN
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
Bài 1: Cho pt: 2(m-1) x + 3 = 2m - 5 (1)
a) tìm m để pt (1) là pt bậc nhất một ẩn
b) Tìm m để pt vô nghiệm
c) Tìm m để pt có nghiệm duy nhất
d) Tìm m để pt vô số nghiệm %3D
e) Với giá trị nào của m thì pt (1) tương đương với pt 2x+5 = 3(x+2)-1
giúp mk vs ạ, mk cam tạ
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
Cho pt bậc hai ẩn x: x2 - 2mx + 2m - 2 = 0 (1)
a) Giải pt (1) khi m = 0, m = 1.
b) Chứng minh pt (1) luôn có hai nghiệm phân biệt với mọi m ϵ R.
c) Tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m.
d) Biết x1, x2 là hai nghiệm của pt (1). Tìm m để x12 + x22 = 4.
e) Tìm m để I = x12 + x22 đạt giá trị nhỏ nhất.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )