Cho hình thang cân ABCD với AB//CD. Gọi I là giao
điểm của AC, BD.
(a) Chứng minh rằng các tam giác IAB, ICD cân tại I.
(b) Gọi M, N là trung điểm của AB, CD. Chứng minh
rằng M, I, N thẳng hàng.
Cho hình thang cân ABCD (AB//CD), AB<CD). AD cắt BC tại O
a) chứng minh rằng tam giác OAB cân
b) Gọi I,J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I,J,O thẳng hàng
c) Qua điểm M thuộc cạnh AC vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB và MNDC là các hình thang cân
Cho hình thang cân ABCD (AB //CD) , AC và BD cắt nhau tại I .
a) Chứng minh ABD = ABC.
b) Gọi M là trung điểm AB . Chứng minh IM vuông góc với AB .
c) Gọi N là trung điểm CD. Chứng minh rằng ba điểm I, M, N là ba điểm
thẳng hàng
cho hình thang cân ABCD (AB//CD) AB<CD . AD cắt BC tại O
a) chứng minh tam giác AOB cân
b)gọi I , J lần lượt là trung điểm của AB và CD . Chứng minh I, J, O thẳng hàng .
c)Qua M thuộc AC vẽ đường thằng sog song CD cắt BĐ tại N . chứng minh tứ giác MNAB , MNDC là hình thang cân
Cho hình thang cân ABCD (AB//CD, AB<CD), O là giao điểm của AC và BD, I là giao điểm của AD và BC
a)Chứng minh OA=OB, OC=OD
b)Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh I, M, O, N thẳng hàng
a: Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: OC+OA=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Cho hình thang cân ABCD(AB//CD)và AB<CD.Gọi M,N,Q thứ tự là trung điểm của AB,BD,AC
a)Chứng minh tam giác MNQ cân
b)Gọi K là trung điểm của AD.Chứng minh N,Q,K thẳng hàng
Cho hình thang cân ABCD có đáy AB và CD. Gọi I là giao điểm hai đường
chéo AC và BD. Chứng minh tam giác IAB, ICD cân.
mn giúp mình với mình cảm ơnnnn
Xét ΔADC và ΔBCD có
CD chung
AD=BC(ABCD là hình thang cân)
AC=BD(ABCD là hình thang cân)
Do đó: ΔADC=ΔBCD(c-c-c)
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)(hai góc tương ứng)
hay \(\widehat{IDC}=\widehat{ICD}\)
Xét ΔIDC có \(\widehat{IDC}=\widehat{ICD}\)(cmt)
nên ΔIDC cân tại I(Định lí đảo của tam giác cân)
Ta có: \(\widehat{IAB}=\widehat{ICD}\)(hai góc so le trong, AB//CD)
\(\widehat{IBA}=\widehat{IDC}\)(hai góc so le trong, AB//CD)
mà \(\widehat{ICD}=\widehat{IDC}\)(cmt)
nên \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)
nên ΔIAB cân tại I(Định lí đảo của tam giác cân)
Cho hình thang cân ABCD ( AB//CD, AB<CD). Gọi O là giao điểm của 2 đoạn thẳng AD và BC.
a. Chứng minh tam giác OAN cân
b.Gọi I là trung điểm của AB, gọi K là trung điểm của CD. Chứng minh 3 điểm O,I,K thẳng hàng.
c.Qua điểm M thuộc cạnh AD. Kẻ đường thẳng song song với CD nó cắt BC tại N. Chứng minh MNCD là hthang cân.
Cho hình thang cân ABCD, biết AB//CD. Gọi O là giao điểm của hai đường chéo AC và BD.
1) Chứng minh rằng tam giác AOB cân tại O.
2) Gọi M, N, P lần lượt là trung điểm của AD, BD và BC. Gọi E là giao điểm của AN với cạnh DC. Chứng minh rằng M, N, P thẳng hàng và tứ giác ADEB là hình bình hành.
3)Chứng minh rằng AB+BC+CD+DA/4<AC<AB+BC+CD+DA/2
Cho hình thang cân ABCD (AB//CD và AB < CD) gọi K là giao điểm của AD và BC, I là giao điểm của AC và BD, M là trung điểm CD. Chứng minh M, K, I thẳng hàng
1]
a]
Ta có:
AI/IM = AB/DM
BK/KM = AB/MC
Do DM =MC
=> AI/IM = BK/KM
=> IK//AB
b]
IE/DM = AI/AM
KF/MC = BK/BM
Mà AI/AM = BK/BM (do IK//AB)
=> IE/DM = KF/MC mà DM=MC
=> IE = KF
2]
a}
Ta có:
AE/EK = AB/DK
BF/FI = AB/CI
Do ABID và ABCK là h..b.hành
=> CK=DI =AB
=> DK = CI = CD -AB
=> AE/EK = NF/FI
=> EF//AB
b}
Ta có EF/CK =AF/AC = AB/CD
=> EF.CD = CK.AB = AB^2 (do CK =AB)
3]
a}
Ta có:
MB/MF = MC/MA (Xét BC//AF)
ME/MB = MC/MA (Xét CE//AB)
=> MB/MF = ME/MB
=> MB^2 = ME.MF
b}
BM/MF = MC/AC (Xét BC//AF)
BM/ME = AM/AC (Xét CE//AB)
=> BM/MF + BM/ME = MC/AC + AM/AC =1
=> BM/MF + BM/ME =1
=> 1/BF+1/BE=1/BM