Cho hình thang ABCD(AB//CD,AB<CD).Gọi M,N,P,Q theo thứ tự là trung điểm của BD,AC,BC,AD.Chứng minh rằng ba điểm M,N,P thẳng hàng
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi M, N, P, Q lần lượt là trung điểm các đoạn thẳng AD, BD, AC, BC.
a) Chứng minh bốn điểm M, N, P, Q thẳng hàng.
b) Chứng minh tứ giác ABPN là hình thang cân.
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật
Cho hình thang cân ABCD với AB//CD. Gọi I là giao
điểm của AC, BD.
(a) Chứng minh rằng các tam giác IAB, ICD cân tại I.
(b) Gọi M, N là trung điểm của AB, CD. Chứng minh
rằng M, I, N thẳng hàng.
cho hình thang cân ABCD(AB // CD) AB<CD.Gọi O là giao điểm của AC và BD, I là giao điểm của AD và BC chứng minh :
a) OA=OB, OD=OC
b )Gọi M,N lần lượt là trung điểm AB và CD .CM I, O, M ,N thẳng hàng
Cho hình thang cân ABCD , AB // CD
a) chứng minh : tam giác ADC = tam giác BDC
b) O là giap điểm 2 đường chéo AC , BD . Chứng minh OA = OB
c) M , N theo thứ tự là trung điểm của AB , CD . chứng minh 3 điểm M , O ,N thẳng hàng
Cho hình thang cân ABCD ( AB//CD, AB<CD). Gọi O là giao điểm của 2 đoạn thẳng AD và BC.
a. Chứng minh tam giác OAN cân
b.Gọi I là trung điểm của AB, gọi K là trung điểm của CD. Chứng minh 3 điểm O,I,K thẳng hàng.
c.Qua điểm M thuộc cạnh AD. Kẻ đường thẳng song song với CD nó cắt BC tại N. Chứng minh MNCD là hthang cân.
Cho hình thang cân ABCD (AB//CD và AB < CD) gọi K là giao điểm của AD và BC, I là giao điểm của AC và BD, M là trung điểm CD. Chứng minh M, K, I thẳng hàng
1, Cho hình thang cân ABCD (AB //, AB < CD). Gọi M, N, P, Q lần lượt là trung điểm các đoạn thẳng AD, BD, AC, BC .
a, Chứng minh 4 điểm M, N, P, Q thẳng hàng .
b, Chứng minh tứ giác ABPN là hình thang cân.
c, Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật
1, Cho hình thang cân ABCD (AB //, AB < CD). Gọi M, N, P, Q lần lượt là trung điểm các đoạn thẳng AD, BD, AC, BC .
a, Chứng minh 4 điểm M, N, P, Q thẳng hàng .
b, Chứng minh tứ giác ABPN là hình thang cân.
c, Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật
2, Cho tam giác ABC. Gọi O là một điểm thuộc miền trong của tam giác M, N, P, Q lần lượt là trung điểm của các đoạn thẳng OB, OC, AC, AB .
a, Chứng minh tứ giác MNPQ là hình bình hành.
b, Xác định vị trí của điểm O Để tứ giác MNPQ là hình chữ nhật
3, Cho tam giác ABC Vuông cân tại C. Trên các cạnh AC , BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ điểm B vẽ PM // BC ( M thuộc AB) Chứng minh tứ giác PCQM là hình chữ nhật
M.N VẼ HÌNH GIÚP LUÔN NHÉ. THANKS NHIỀU Ạ