chứng minh 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau
Chứng minh rằng : 3n+1 và 4n+1 (n thuộc N) là 2 số nguyên tố cùng nhau
Gọi ƯCNL(3n+1 ; 4n+1) = d
Ta có : 3n + 1 chia hết cho d => 4(3n + 1) chia hết cho d
4n + 1 chia hết cho d => 3(4n + 1) chia hết cho d
=> 4(3n + 1) - 3(4n + 1) chia hết cho d
=> (12n + 4) - (12n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 3n + 1 và 4n + 1 nguyên tố cùng nhau (đpcm)
Gọi d là ƯCLN(3n+1;4n+1)
3n+1 chia hết cho d 4(3n+1) chia hết cho d 12n+4 chia hết cho d(1)
=>{ =>{ =>
4n+1 chia hết cho d 3(4n+1) chia hết cho d 12n+3 chia hết cho d(2)
Lấy (1)-(2) ta được : (12n+4) - (12n+3) chia hết cho d <=>1chia hết cho d
=> d thuộc Ư(1)=>d thuộc Ư(1) => d thuộc {+-1} vì d là ƯCLN=> d=1=> 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau
Đặt ƯCLN(3n + 1;4n + 1) = d
Ta có:3n + 1 chia hết cho d
4n + 1 chia hết cho d
=> 4(3n + 1 - 3(4n + 1) chia hết cho d
12n + 4 - 12n - 3 chia hết cho d
1 chia hết cho d => d \(\in\)Ư(1) = 1
Vậy: ƯCLN(3n + 1;4n + 1) = 1 hay 3n + 1 và 4n + 1 là 2 nguyên tố cùng nhau (đpcm)
chứng minh rằng 3n + 1 và 4n + 1 ( n thuộc N ) là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(3n + 1; 4n + 1) Nên ta có :
3n + 1 ⋮ d và 4n + 1 ⋮ d
=> 4(3n + 1) ⋮ d và 3(4n + 1) ⋮ d
=> 12n + 4 ⋮ d và 12n + 3 ⋮ d
=> (12n + 4) - (12n + 3) ⋮ d
=> 1 ⋮ d => d = ± 1
Vì ƯCLN(3n + 1; 4n + 1) = 1 nên 3n + 1 và 4n + 1 là nguyên tố cùng nhau ( đpcm )
Gọi \(d=\left(3n+1,4n+1\right)=>\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}}\)
\(=>\left(4n-1\right)-\left(3n-1\right)⋮d\)
\(=>4\left(3n-1\right)-3\left(4n-1\right)⋮d\)
\(=>\left(12n-4\right)-\left(12n-3⋮d\right)\)
\(=>1⋮d\)(đpcm)
Chứng minh rằng số tự nhiên n là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+2
b)2n+2 và 5n+3 c) 3n+1 và 4n+1
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
Chứng minh rắng với n thuộc N* thì 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau
Gọi UCLN\(\left(3n+1,4n+1\right)=d\)
=) \(3n+1⋮d
\)=) \(4\left(3n+1\right)⋮d\)=) \(12n+4⋮d\)
\(4n+1⋮d\)=) \(3\left(4n+1\right)⋮d\)=) \(12n+3⋮d\)
=) \(\left(12n+4\right)-\left(12n+3\right)⋮d\)
=) \(12n+4-12n-3⋮d\)
=) \(1⋮d\)=) \(d\inƯ\left(1\right)=1\)
=) UCLN\(\left(3n+1,4n+1\right)=1\)
Vậy \(3n+1,4n+1\)là 2 số nguyên tố cùng nhau ( ĐPCM )
Chứng minh rằng:
a) 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
b) 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Chứng minh rằng: 3n + 1 và 4n + 1 (n thuộc N) là 2 nguyên tố cùng nhau.
Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d
4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d
(12n+4 )- (12n+3) chia hết cho d
1 chia hết cho d
vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau
Chứng minh rằng: 3n + 1 và 4n + 1 (n thuộc N) là 2 nguyên tố cùng nhau.
Refer:
Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d
4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d
(12n+4 )- (12n+3) chia hết cho d
1 chia hết cho d
vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau
chứng minh rằng các số sau đều là nguyên tố cùng nhau
(3n +1)và (4n+1)
Gọi d là BC(3n+1; 4n+1) (d thuộc n)
=>3n+1 chia hết cho d =>12n+4 chia hết cho d (nhân 3n+1 với 4)
=>4n+1 chia hết cho d =>12n+3 chia hết cho d (Nhân 4n+1 với 3)
=>12n+4 -12n-3 chia hết cho d
=>1 chia hết cho d
=>d=1=>(3n+1;4n+1)+1
=>3n+1 và 4n+1 là 2 số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên khác 0 thì 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
Gọi d là UCLN của 3n + 1 và 4n + 1
=> 3n+1 ⋮ d => 12n+4 ⋮ d
4n+1 ⋮ d => 12n+3 ⋮ d
=> (12n+4) – (12n+3) ⋮ d
=> 1 ⋮ d => d = 1
Vậy 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên khác 0 thì 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau