Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn  Thuỳ Trang
Xem chi tiết
Hoàng Tử của Zalo
26 tháng 7 2016 lúc 8:31

 x+y=2 
<=> x=2-y(1) 
giả sử x*y≤1 
<=>(2-y)y≤1 
<=>y^2 - 2y +1≥0 
<=> (y-1)^2≥0 
<=>y≥1(2) 
từ (1),(2)=> x*y≤1 

     Đúng nha !

hotboy
27 tháng 7 2016 lúc 20:01

mik thấy là vẫn sai sai ấy

Hân Nguyễn
1 tháng 8 2021 lúc 22:13
x+y=2x=2-y(1) giả
Khách vãng lai đã xóa
Nguyễn Khánh Ly
Xem chi tiết
super xity
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
30 tháng 3 2021 lúc 20:39

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a = b

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
30 tháng 3 2021 lúc 20:41

úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé

2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab

= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )

Sử dụng kết quả ở bài trước ta có đpcm

Đẳng thức xảy ra <=> a=b=1/2

Khách vãng lai đã xóa
yoyo2003ht
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 3 2021 lúc 10:26

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

Khách vãng lai đã xóa
Lê Quang
Xem chi tiết
Akai Haruma
13 tháng 5 2021 lúc 22:40

** Lần sau bạn chú ý, gõ đề bằng công thức toán.

Lời giải:

Vì $0\leq a,b,c\leq 1$ nên $0\leq c\leq ab+1\Rightarrow \frac{c}{ab+1}\leq 1(1)$

Mặt khác:

$0\leq a\leq b\leq c\leq 1$ nên:

$\frac{a}{bc+1}+\frac{b}{ac+1}\leq \frac{a}{ab+1}+\frac{b}{ab+1}=\frac{a+b}{ab+1}=\frac{a+b}{ab+1}-1+1=\frac{(a-1)(1-b)}{ab+1}+1\leq 1(2)$

Lấy $(1)+(2)$ ta có đpcm

Dấu "=" xảy ra khi $(a,b,c)=(0,1,1)$

Nguyễn bảo ngoc
Xem chi tiết
Yen Nhi
16 tháng 5 2021 lúc 20:13

\(a)\)

\(\frac{x^2+y^2+5}{2}\ge x+2y\)

\(\rightarrow\frac{x^2+y^2+5}{2}-x-2y\ge0\)

\(\rightarrow\frac{x^2+y^2-2x-4y+5}{2}\ge0\)

\(\rightarrow\frac{\left(x^2-2x+1\right)+\left(y^2-4y+4\right)}{2}\ge0\)

\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)

\(\rightarrow\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{cases}}\)

\(\rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)

Khách vãng lai đã xóa
Yen Nhi
16 tháng 5 2021 lúc 20:21

b)

Áp dụng bất đẳng thức dạng 1/a + 1/b + 4 / a+b

-> 1/a+1 + 1/b+1 ≥ 4/a+b+1+1

Mà ta có: a+b=1

-> 1/a+1 + 1/b+1 ≥ 4/1+1+1 = 4/3

Khách vãng lai đã xóa
Đỗ Đức Lợi
Xem chi tiết
fan FA
28 tháng 8 2016 lúc 16:07

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

♥
3 tháng 5 2019 lúc 15:01

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

♥
3 tháng 5 2019 lúc 15:06

sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề

Hưng Box TV
Xem chi tiết
Almoez Ali
Xem chi tiết
Nguyễn Thành Long
19 tháng 3 2022 lúc 22:23

undefined

Nguyễn Việt Lâm
20 tháng 3 2022 lúc 11:59

\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)

Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)

Gọi vế trái của BĐT cần chứng minh là P:

\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)

\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)